Departament de Física, Universitat Politècnica de Catalunya, Rambla St. Nebridi 22, 08222, Terrassa, Spain.
Sci Rep. 2021 Apr 19;11(1):8423. doi: 10.1038/s41598-021-87818-3.
Identifying, from time series analysis, reliable indicators of causal relationships is essential for many disciplines. Main challenges are distinguishing correlation from causality and discriminating between direct and indirect interactions. Over the years many methods for data-driven causal inference have been proposed; however, their success largely depends on the characteristics of the system under investigation. Often, their data requirements, computational cost or number of parameters limit their applicability. Here we propose a computationally efficient measure for causality testing, which we refer to as pseudo transfer entropy (pTE), that we derive from the standard definition of transfer entropy (TE) by using a Gaussian approximation. We demonstrate the power of the pTE measure on simulated and on real-world data. In all cases we find that pTE returns results that are very similar to those returned by Granger causality (GC). Importantly, for short time series, pTE combined with time-shifted (T-S) surrogates for significance testing strongly reduces the computational cost with respect to the widely used iterative amplitude adjusted Fourier transform (IAAFT) surrogate testing. For example, for time series of 100 data points, pTE and T-S reduce the computational time by [Formula: see text] with respect to GC and IAAFT. We also show that pTE is robust against observational noise. Therefore, we argue that the causal inference approach proposed here will be extremely valuable when causality networks need to be inferred from the analysis of a large number of short time series.
从时间序列分析中识别可靠的因果关系指标对于许多学科都是至关重要的。主要挑战是区分相关关系和因果关系,以及区分直接和间接相互作用。多年来,已经提出了许多用于数据驱动因果推断的方法;然而,它们的成功在很大程度上取决于所研究系统的特征。通常,它们对数据的要求、计算成本或参数数量限制了它们的适用性。在这里,我们提出了一种计算效率高的因果关系测试方法,我们称之为伪传递熵(pTE),它是通过使用高斯逼近从传递熵(TE)的标准定义中推导出来的。我们在模拟数据和真实世界数据上展示了 pTE 度量的强大功能。在所有情况下,我们发现 pTE 返回的结果与格兰杰因果关系(GC)返回的结果非常相似。重要的是,对于短时间序列,pTE 与时间移位(T-S)替换相结合进行显著性检验,与广泛使用的迭代幅度调整傅里叶变换(IAAFT)替换检验相比,大大降低了计算成本。例如,对于 100 个数据点的时间序列,pTE 和 T-S 相对于 GC 和 IAAFT 减少了[Formula: see text]的计算时间。我们还表明,pTE 对观测噪声具有鲁棒性。因此,我们认为,当需要从大量短时间序列的分析中推断因果关系网络时,这里提出的因果推断方法将具有极高的价值。