Greenland S
Division of Epidemiology, UCLA School of Public Health 90024.
Am J Epidemiol. 1988 Jul;128(1):231-7. doi: 10.1093/oxfordjournals.aje.a114945.
A recent trend in epidemiologic analysis has been away from significance tests and toward confidence intervals. In accord with this trend, several authors have proposed the use of expected confidence intervals in the design of epidemiologic studies. This paper discusses how expected confidence intervals, if not properly centered, can be misleading indicators of the discriminatory power of a study. To rectify such problems, the study must be designed so that the confidence interval has a high probability of not containing at least one plausible but incorrect parameter value. To achieve this end, conventional formulas for power and sample size may be used. Expected intervals, if properly centered, can be used to design uniformly powerful studies but will yield sample-size requirements far in excess of previously proposed methods.
流行病学分析的一个最新趋势是从显著性检验转向置信区间。顺应这一趋势,几位作者提议在流行病学研究设计中使用期望置信区间。本文讨论了如果期望置信区间没有正确定位,如何会成为研究鉴别力的误导性指标。为纠正此类问题,研究设计必须使置信区间极有可能不包含至少一个似是而非但错误的参数值。为实现这一目的,可以使用功效和样本量的传统公式。如果正确定位,期望区间可用于设计具有一致功效的研究,但会产生远超先前提出方法的样本量要求。