基于机器学习的多参数磁共振成像放射组学预测脑桥中线胶质瘤 H3K27M 突变。

Machine Learning-Based Multiparametric Magnetic Resonance Imaging Radiomics for Prediction of H3K27M Mutation in Midline Gliomas.

机构信息

Department of Radiology, University of Iowa Hospital and Clinics, Iowa City, Iowa, USA.

Department of Radiology, Başakşehir Çam and Sakura City Hospital, Istanbul, Turkey.

出版信息

World Neurosurg. 2021 Jul;151:e78-e85. doi: 10.1016/j.wneu.2021.03.135. Epub 2021 Apr 2.

Abstract

OBJECTIVE

H3K27M mutation in gliomas has prognostic implications. Previous magnetic resonance imaging (MRI) studies have reported variable rates of tumoral enhancement, necrotic changes, and peritumoral edema in H3K27M-mutant gliomas, with no distinguishing imaging features compared with wild-type gliomas. We aimed to construct an MRI machine learning (ML)-based radiomic model to predict H3K27M mutation in midline gliomas.

METHODS

A total of 109 patients from 3 academic centers were included in this study. Fifty patients had H3K27M mutation and 59 were wild-type. Conventional MRI sequences (T1-weighted, T2-weighted, T2-fluid-attenuated inversion recovery, postcontrast T1-weighted, and apparent diffusion coefficient maps) were used for feature extraction. A total of 651 radiomic features per each sequence were extracted. Patients were randomly selected with a 7:3 ratio to create training (n = 76) and test (n = 33) data sets. An extreme gradient boosting algorithm (XGBoost) was used in ML-based model development. Performance of the model was assessed by area under the receiver operating characteristic curve.

RESULTS

Pediatric patients accounted for a larger proportion of the study cohort (60 pediatric [55%] vs. 49 adult [45%] patients). XGBoost with additional feature selection had an area under the receiver operating characteristic curve of 0.791 and 0.737 in the training and test data sets, respectively. The model achieved accuracy, precision (positive predictive value), recall (sensitivity), and F1 (harmonic mean of precision and recall) measures of 72.7%, 76.5%, 72.2%, and 74.3%, respectively, in the test set.

CONCLUSIONS

Our multi-institutional study suggests that ML-based radiomic analysis of multiparametric MRI can be a promising noninvasive technique to predict H3K27M mutation status in midline gliomas.

摘要

目的

H3K27M 突变在神经胶质瘤中具有预后意义。先前的磁共振成像(MRI)研究报告了 H3K27M 突变型神经胶质瘤中肿瘤强化、坏死变化和瘤周水肿的可变发生率,与野生型神经胶质瘤相比,没有明显的影像学特征。我们旨在构建一种基于 MRI 的机器学习(ML)放射组学模型,以预测中线神经胶质瘤中的 H3K27M 突变。

方法

本研究共纳入来自 3 个学术中心的 109 名患者。其中 50 名患者存在 H3K27M 突变,59 名患者为野生型。使用常规 MRI 序列(T1 加权、T2 加权、T2 液体衰减反转恢复、对比后 T1 加权和表观扩散系数图)进行特征提取。每个序列共提取 651 个放射组学特征。患者按 7:3 的比例随机选择,创建训练(n=76)和测试(n=33)数据集。采用极端梯度提升算法(XGBoost)进行基于 ML 的模型开发。通过接受者操作特征曲线下面积评估模型性能。

结果

研究队列中儿童患者占比较大(60 名儿科患者[55%] vs. 49 名成年患者[45%])。XGBoost 联合额外的特征选择在训练和测试数据集的接受者操作特征曲线下面积分别为 0.791 和 0.737。该模型在测试集中的准确率、精度(阳性预测值)、召回率(灵敏度)和 F1(精度和召回率的调和平均值)分别为 72.7%、76.5%、72.2%和 74.3%。

结论

我们的多中心研究表明,基于 ML 的多参数 MRI 放射组学分析可能是一种很有前途的非侵入性技术,可以预测中线神经胶质瘤中的 H3K27M 突变状态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索