MRI 放射组学特征预测脑胶质瘤 IDH1 突变状态:基于梯度提升决策树的机器学习方法。

MRI Radiomic Features to Predict IDH1 Mutation Status in Gliomas: A Machine Learning Approach using Gradient Tree Boosting.

机构信息

Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

Department of Psychology, Cornell University, Ithaca, NY 14853, USA.

出版信息

Int J Mol Sci. 2020 Oct 27;21(21):8004. doi: 10.3390/ijms21218004.

Abstract

Patients with gliomas, isocitrate dehydrogenase 1 () mutation status have been studied as a prognostic indicator. Recent advances in machine learning (ML) have demonstrated promise in utilizing radiomic features to study disease processes in the brain. We investigate whether ML analysis of multiparametric radiomic features from preoperative Magnetic Resonance Imaging (MRI) can predict mutation status in patients with glioma. This retrospective study included patients with glioma with known status and preoperative MRI. Radiomic features were extracted from Fluid-Attenuated Inversion Recovery (FLAIR) and Diffused Weighted Imaging (DWI). The dataset was split into training, validation, and testing sets by stratified sampling. Synthetic Minority Oversampling Technique (SMOTE) was applied to the training sets. eXtreme Gradient Boosting (XGBoost) classifiers were trained, and the hyperparameters were tuned. Receiver operating characteristic curve (ROC), accuracy, and f1-scores were collected. A total of 100 patients (age: 55 ± 15, M/F 60/40); with mutant ( = 22) and wildtype ( = 78) were included. The best performance was seen with a DWI-trained XGBoost model, which achieved ROC with Area Under the Curve (AUC) of 0.97, accuracy of 0.90, and f1-score of 0.75 on the test set. The FLAIR-trained XGBoost model achieved ROC with AUC of 0.95, accuracy of 0.90, f1-score of 0.75 on the test set. A model that was trained on combined FLAIR-DWI radiomic features did not provide incremental accuracy. The results show that a XGBoost classifier using multiparametric radiomic features derived from preoperative MRI can predict mutation status with > 90% accuracy.

摘要

患者的胶质瘤,异柠檬酸脱氢酶 1()突变状态已被研究作为一种预后指标。机器学习(ML)的最新进展表明,利用放射组学特征来研究大脑中的疾病过程具有很大的潜力。我们研究了术前磁共振成像(MRI)的多参数放射组学特征的 ML 分析是否可以预测胶质瘤患者的突变状态。这项回顾性研究纳入了已知状态和术前 MRI 的胶质瘤患者。从液体衰减反转恢复(FLAIR)和弥散加权成像(DWI)中提取放射组学特征。数据集通过分层抽样分为训练集、验证集和测试集。对训练集应用合成少数过采样技术(SMOTE)。训练极端梯度提升(XGBoost)分类器,并调整超参数。收集接收器工作特性曲线(ROC)、准确性和 f1 分数。共纳入 100 例患者(年龄:55 ± 15,M/F 60/40);其中突变型(= 22)和野生型(= 78)。在 DWI 训练的 XGBoost 模型中取得了最佳性能,在测试集上的 ROC 曲线下面积(AUC)为 0.97,准确性为 0.90,f1 得分为 0.75。在测试集上,FLAIR 训练的 XGBoost 模型的 ROC 曲线下面积(AUC)为 0.95,准确性为 0.90,f1 得分为 0.75。在联合 FLAIR-DWI 放射组学特征上训练的模型并未提供增量准确性。结果表明,使用术前 MRI 衍生的多参数放射组学特征的 XGBoost 分类器可以以 >90%的准确率预测突变状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/272d/7662499/6c0e9ec36e15/ijms-21-08004-g0A1.jpg

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索