Li Rengang, Zhao Yaqian, Li Ruyang, Liu Haiwei, Ge Yuan, Xu Zhe
Opt Express. 2021 Mar 29;29(7):9826-9835. doi: 10.1364/OE.420651.
We demonstrate the optical trapping of single dielectric nanoparticles in a microfluidic chamber using a coupled T-shaped copper plasmonic nanoantenna for studying light-matter interaction. The nanoantenna is composed of two identical copper elements separated by a 50 nm gap and each element is designed with two nanoblocks. Our nanoantenna inherits three different advantages compared to previous plasmonic nanoantennas, which are usually made of gold. First, copper is a very promising plasmonic material with its very similar optical properties as gold. Second, copper is comparably cheap, which is compatible with industry-standard fabrication processes and has been widely used in microelectronics. Third, the trapping area of tweezers is expanded due to the intrinsic Fabry-Perot cavity with two parallel surfaces. We present finite element method simulations of the near-field distribution and photothermal effects. And we perform Maxwell stress tensor simulations of optical forces exerted on an individual nanoparticle in the vicinity of the nanoantenna. In addition, we examine how the existence of an oxide layer of cupric oxide and the heat sink substrate influence the optical trapping properties of copper nanoantennas. This work demonstrates that the coupled T-shaped copper nanoantennas are a promising means as optical nanotweezers to trap single nanoparticles in solution, opening up a new route for nanophotonic devices in optical information processing and on-chip biological sensing.
我们展示了使用耦合 T 形铜等离子体纳米天线在微流控腔室中对单个介电纳米颗粒进行光学捕获,以研究光与物质的相互作用。该纳米天线由两个相同的铜元件组成,它们之间有 50 纳米的间隙,每个元件都设计有两个纳米块。与以前通常由金制成的等离子体纳米天线相比,我们的纳米天线具有三个不同的优点。首先,铜是一种非常有前途的等离子体材料,其光学特性与金非常相似。其次,铜相对便宜,与行业标准制造工艺兼容,并且已广泛应用于微电子领域。第三,由于具有两个平行表面的固有法布里-珀罗腔,镊子的捕获区域得以扩大。我们给出了近场分布和光热效应的有限元方法模拟。并且我们对纳米天线附近单个纳米颗粒上施加的光学力进行了麦克斯韦应力张量模拟。此外,我们研究了氧化铜氧化层的存在和散热基板如何影响铜纳米天线的光学捕获特性。这项工作表明,耦合 T 形铜纳米天线作为光学镊子在溶液中捕获单个纳米颗粒是一种很有前途的手段,为光学信息处理和片上生物传感中的纳米光子器件开辟了一条新途径。