Xu Mingfeng, Pu Mingbo, Sang Di, Zheng Yuhan, Li Xiong, Ma Xiaoliang, Guo Yinghui, Zhang Renyan, Luo Xiangang
Opt Express. 2021 Mar 29;29(7):10181-10191. doi: 10.1364/OE.422112.
We investigate the topology optimization of geometric phase metasurfaces for wide-angle and high-efficiency deflection, where adjoint-based multi-object optimization approach is adopted to improve the absolute efficiency while maintaining the polarization conversion characteristic of geometric phase metasurfaces. We show that, for the initially discrete geometric phase metasurfaces with different materials and working wavelengths, the topology shapes gradually evolve from discrete structures to quasi-continuous arrangements with the increment of optimization iteration operations. More importantly, the finally optimized metasurfaces manifest as catenary-like structure, providing significant improvements of absolute efficiency. Furthermore, for the initial structure with catenary distribution, the corresponding optimized metasurface also has a catenary-like topology shape. Our results on the topology-optimized geometric phase metasurfaces reveal that, from the perspective of numerical optimization, the continuous catenary metasurfaces is superior to the discrete geometric phase metasurfaces.
我们研究了用于广角高效偏转的几何相位超表面的拓扑优化,采用基于伴随的多目标优化方法在保持几何相位超表面偏振转换特性的同时提高绝对效率。我们表明,对于具有不同材料和工作波长的初始离散几何相位超表面,随着优化迭代操作的增加,拓扑形状逐渐从离散结构演变为准连续排列。更重要的是,最终优化的超表面呈现出悬链线状结构,绝对效率有显著提高。此外,对于具有悬链线分布的初始结构,相应的优化超表面也具有悬链线状的拓扑形状。我们关于拓扑优化几何相位超表面的结果表明,从数值优化的角度来看,连续悬链线超表面优于离散几何相位超表面。