Suppr超能文献

基于深度学习和计算机图形学的单次条纹投影轮廓术

Single-shot fringe projection profilometry based on deep learning and computer graphics.

作者信息

Wang Fanzhou, Wang Chenxing, Guan Qingze

出版信息

Opt Express. 2021 Mar 15;29(6):8024-8040. doi: 10.1364/OE.418430.

Abstract

Multiple works have applied deep learning to fringe projection profilometry (FPP) in recent years. However, to obtain a large amount of data from actual systems for training is still a tricky problem, and moreover, the network design and optimization is still worth exploring. In this paper, we introduce graphic software to build virtual FPP systems in order to generate the desired datasets conveniently and simply. The way of constructing a virtual FPP system is described in detail firstly, and then some key factors to set the virtual FPP system much closer to reality are analyzed. With the aim of accurately estimating the depth image from only one fringe image, we also design a new loss function to enhance the overall quality and detailed information is restored. And two representative networks, U-Net and pix2pix, are compared in multiple aspects. The real experiments prove the good accuracy and generalization of the network trained by the diverse data from our virtual systems and the designed loss, providing a good guidance for real applications of deep learning methods.

摘要

近年来,多项研究将深度学习应用于条纹投影轮廓术(FPP)。然而,从实际系统中获取大量数据用于训练仍然是一个棘手的问题,此外,网络设计和优化仍值得探索。在本文中,我们引入图形软件来构建虚拟FPP系统,以便方便、简单地生成所需的数据集。首先详细描述了构建虚拟FPP系统的方法,然后分析了使虚拟FPP系统更接近实际的一些关键因素。为了仅从一幅条纹图像准确估计深度图像,我们还设计了一种新的损失函数来提高整体质量并恢复详细信息。并在多个方面对两个具有代表性的网络U-Net和pix2pix进行了比较。实际实验证明了由我们虚拟系统的多样数据和设计的损失所训练的网络具有良好的准确性和泛化能力,为深度学习方法的实际应用提供了良好的指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验