Suppr超能文献

基于单相机条纹投影轮廓术的三维成像弱监督深度估计

Weakly Supervised Depth Estimation for 3D Imaging with Single Camera Fringe Projection Profilometry.

作者信息

Tan Chunqian, Song Wanzhong

机构信息

College of Computer Science, Sichuan University, Chengdu 610065, China.

出版信息

Sensors (Basel). 2024 Mar 6;24(5):1701. doi: 10.3390/s24051701.

Abstract

Fringe projection profilometry (FPP) is widely used for high-accuracy 3D imaging. However, employing multiple sets of fringe patterns ensures 3D reconstruction accuracy while inevitably constraining the measurement speed. Conventional dual-frequency FPP reduces the number of fringe patterns for one reconstruction to six or fewer, but the highest period-number of fringe patterns generally is limited because of phase errors. Deep learning makes depth estimation from fringe images possible. Inspired by unsupervised monocular depth estimation, this paper proposes a novel, weakly supervised method of depth estimation for single-camera FPP. The trained network can estimate the depth from three frames of 64-period fringe images. The proposed method is more efficient in terms of fringe pattern efficiency by at least 50% compared to conventional FPP. The experimental results show that the method achieves competitive accuracy compared to the supervised method and is significantly superior to the conventional dual-frequency methods.

摘要

条纹投影轮廓术(FPP)被广泛用于高精度三维成像。然而,采用多组条纹图案可确保三维重建精度,但不可避免地会限制测量速度。传统的双频FPP将一次重建所需的条纹图案数量减少到六个或更少,但由于相位误差,条纹图案的最高周期数通常受到限制。深度学习使从条纹图像进行深度估计成为可能。受无监督单目深度估计的启发,本文提出了一种用于单相机FPP的新型弱监督深度估计方法。经过训练的网络可以从三帧64周期条纹图像中估计深度。与传统FPP相比,该方法在条纹图案效率方面至少提高了50%。实验结果表明,该方法与有监督方法相比具有相当的精度,并且明显优于传统的双频方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fb2/10933833/880a0f723f6c/sensors-24-01701-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验