Evans Rhys G, Devlieghere Ester, Keijzer Robrecht, Dirckx Joris J J, Van der Jeught Sam
Industrial Vision Lab (InViLab), Faculty of Applied Engineering, Campus Groenenborger, University of Antwerp, Groenenborgerlaan 179, 2020 Antwerp, Belgium.
Laboratory of Biomedical Physics (BIMEF), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
J Imaging. 2024 Jul 24;10(8):179. doi: 10.3390/jimaging10080179.
In 3D optical metrology, single-shot deep learning-based structured light profilometry (SS-DL-SLP) has gained attention because of its measurement speed, simplicity of optical setup, and robustness to noise and motion artefacts. However, gathering a sufficiently large training dataset for these techniques remains challenging because of practical limitations. This paper presents a comprehensive DL-SLP dataset of over 10,000 physical data couples. The dataset was constructed by 3D-printing a calibration target featuring randomly varying surface profiles and storing the height profiles and the corresponding deformed fringe patterns. Our dataset aims to serve as a benchmark for evaluating and comparing different models and network architectures in DL-SLP. We performed an analysis of several established neural networks, demonstrating high accuracy in obtaining full-field height information from previously unseen fringe patterns. In addition, the network was validated on unique objects to test the overall robustness of the trained model. To facilitate further research and promote reproducibility, all code and the dataset are made publicly available. This dataset will enable researchers to explore, develop, and benchmark novel DL-based approaches for SS-DL-SLP.
在三维光学计量中,基于深度学习的单次结构光轮廓术(SS-DL-SLP)因其测量速度、光学设置简单以及对噪声和运动伪影的鲁棒性而受到关注。然而,由于实际限制,为这些技术收集足够大的训练数据集仍然具有挑战性。本文展示了一个包含超过10000对物理数据的全面的DL-SLP数据集。该数据集是通过3D打印一个具有随机变化表面轮廓的校准目标,并存储高度轮廓和相应的变形条纹图案构建而成。我们的数据集旨在作为评估和比较DL-SLP中不同模型和网络架构的基准。我们对几个已建立的神经网络进行了分析,证明了从以前未见过的条纹图案中获取全场高度信息的高精度。此外,该网络在独特物体上进行了验证,以测试训练模型的整体鲁棒性。为了便于进一步研究和提高可重复性,所有代码和数据集都已公开提供。这个数据集将使研究人员能够探索、开发和基准测试用于SS-DL-SLP的基于深度学习的新方法。