Suppr超能文献

3D 打印海藻酸钠珠生成器用于高通量细胞培养。

3D printed alginate bead generator for high-throughput cell culture.

机构信息

Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA.

Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.

出版信息

Biomed Microdevices. 2021 Apr 5;23(2):22. doi: 10.1007/s10544-021-00561-4.

Abstract

Alginate hydrogel beads are a common platform for generating 3D cell cultures in biomedical research. Simple methods for bead generation using a manual pipettor or syringe are low-throughput and produce beads showing high variability in size and shape. To address these challenges, we designed a 3D printed bead generator that uses an airflow to cleave beads from a stream of hydrogel solution. The performance of the proposed alginate bead generator was evaluated by changing the volume flow rates of alginate (Q) and air (Q), the diameter of device nozzle (d) and the concentration of alginate gel solution (C). We identified that the diameter of beads (D = 0.9 -2.8 mm) can be precisely controlled by changing Q and d. Also the bead generation frequency (f) can be tuned by changing Q. Finally, we demonstrated that viability and biological function (pericellular matrix deposition) of chondrocytes were not adversely affected by high f using this bead generator. Because 3D printing is becoming a more accessible technique, our unique design will allow greater access to average biomedical research laboratories, STEM education and industries in cost- and time-effective manner.

摘要

海藻酸钠水凝胶珠是生物医学研究中生成 3D 细胞培养物的常用平台。使用手动移液器或注射器生成珠粒的简单方法通量低,所生成的珠粒在尺寸和形状上具有高度可变性。为了解决这些挑战,我们设计了一种 3D 打印珠粒生成器,该生成器利用气流从凝胶溶液流中切割珠粒。通过改变海藻酸钠(Q)和空气(Q)的体积流量、装置喷嘴的直径(d)和海藻酸钠凝胶溶液的浓度(C),评估了所提出的海藻酸钠珠粒生成器的性能。我们发现通过改变 Q 和 d 可以精确控制珠粒的直径(D=0.9-2.8mm)。此外,通过改变 Q 还可以调整珠粒生成频率(f)。最后,我们使用该珠粒生成器证明了高 f 不会对软骨细胞的活力和生物学功能(细胞外基质沉积)产生不利影响。由于 3D 打印技术变得越来越容易获得,我们独特的设计将以具有成本效益和时间效益的方式,允许更多的普通生物医学研究实验室、STEM 教育和行业更容易地获得这项技术。

相似文献

1
3D printed alginate bead generator for high-throughput cell culture.
Biomed Microdevices. 2021 Apr 5;23(2):22. doi: 10.1007/s10544-021-00561-4.
2
A 3D printed size-tunable flow-focusing droplet microdevice to produce cell-laden hydrogel microspheres.
Anal Chim Acta. 2022 Feb 1;1192:339344. doi: 10.1016/j.aca.2021.339344. Epub 2021 Dec 7.
3
Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogel.
Biomacromolecules. 2020 May 11;21(5):1875-1885. doi: 10.1021/acs.biomac.9b01745. Epub 2020 Feb 11.
4
Controlling the size of alginate gel beads by use of a high electrostatic potential.
J Microencapsul. 2002 Jul-Aug;19(4):415-24. doi: 10.1080/02652040210144234.
5
Hybrid 3D printing and electrodeposition approach for controllable 3D alginate hydrogel formation.
Biofabrication. 2017 Jun 7;9(2):025032. doi: 10.1088/1758-5090/aa6ed8.
6
Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.
ACS Appl Mater Interfaces. 2020 Jan 29;12(4):4343-4357. doi: 10.1021/acsami.9b22062. Epub 2020 Jan 17.
7
10
3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation.
Curr Med Imaging. 2021;17(7):832-842. doi: 10.2174/1573405616666201217112939.

引用本文的文献

本文引用的文献

3
Bioactive hydrogels for bone regeneration.
Bioact Mater. 2018 May 26;3(4):401-417. doi: 10.1016/j.bioactmat.2018.05.006. eCollection 2018 Dec.
4
Design of spherically structured 3D in vitro tumor models -Advances and prospects.
Acta Biomater. 2018 Jul 15;75:11-34. doi: 10.1016/j.actbio.2018.05.034. Epub 2018 May 23.
6
A Tunable, Three-Dimensional In Vitro Culture Model of Growth Plate Cartilage Using Alginate Hydrogel Scaffolds.
Tissue Eng Part A. 2018 Jan;24(1-2):94-105. doi: 10.1089/ten.tea.2017.0091. Epub 2017 May 18.
7
Coaxial air flow device for the production of millimeter-sized spherical hydrogel particles.
Rev Sci Instrum. 2016 Dec;87(12):125113. doi: 10.1063/1.4972587.
8
Versatile, cell and chip friendly method to gel alginate in microfluidic devices.
Lab Chip. 2016 Oct 7;16(19):3718-27. doi: 10.1039/c6lc00769d. Epub 2016 Aug 22.
10
Microfluidic Generation of Monodisperse, Structurally Homogeneous Alginate Microgels for Cell Encapsulation and 3D Cell Culture.
Adv Healthc Mater. 2015 Aug 5;4(11):1628-33. doi: 10.1002/adhm.201500021. Epub 2015 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验