Suppr超能文献

一类新型的分子电催化剂用于析氢反应:MN@C(2=68、78 和 80)富勒烯的催化活性。

A New Class of Molecular Electrocatalysts for Hydrogen Evolution: Catalytic Activity of MN@C (2 = 68, 78, and 80) Fullerenes.

机构信息

Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States.

Department of Environmental Sciences and Engineering, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States.

出版信息

J Am Chem Soc. 2021 Apr 28;143(16):6037-6042. doi: 10.1021/jacs.0c13002. Epub 2021 Apr 6.

Abstract

The electrocatalytic properties of some endohedral fullerenes for hydrogen evolution reactions (HER) were recently predicted by DFT calculations. Nonetheless, the experimental catalytic performance under realistic electrochemical environments of these 0D-nanomaterials have not been explored. Here, for the first time, we disclose the HER electrocatalytic behavior of seven MN@2 (2 = 68, 78, and 80) fullerenes (GdN@(7)-C, YN@(7)-C, LuN@(7)-C, ScN@(7)-C, ScN@(6)-C, ScN@(5)-C, and ScN@(6140)-C) using a combination of experimental and theoretical techniques. The non-IPR ScN@(6140)-C compound exhibited the best catalytic performance toward the generation of molecular hydrogen, exhibiting an onset potential of -38 mV vs RHE, a very high mass activity of 1.75 A·mg at -0.4 V vs RHE, and an excellent electrochemical stability, retaining 96% of the initial current after 24 h. The superior performance was explained on the basis of the fused pentagon rings, which represent a new and promising HER catalytic motif.

摘要

最近,通过 DFT 计算预测了一些笼状富勒烯对析氢反应 (HER) 的电催化性能。然而,这些 0D 纳米材料在实际电化学环境下的实验催化性能尚未得到探索。在这里,我们首次通过实验和理论技术相结合,揭示了七种 MN@2(2 = 68、78 和 80)富勒烯(GdN@(7)-C、YN@(7)-C、LuN@(7)-C、ScN@(7)-C、ScN@(6)-C、ScN@(5)-C 和 ScN@(6140)-C)的 HER 电催化行为。非 IP 基 ScN@(6140)-C 化合物在生成分子氢方面表现出最佳的催化性能,起始电位为 -38 mV 相对于 RHE,在 -0.4 V 相对于 RHE 时具有非常高的质量活性 1.75 A·mg,并且电化学稳定性优异,在 24 小时后保留了初始电流的 96%。优异的性能基于熔合的五边形环来解释,这代表了一种新的、有前途的 HER 催化模式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验