Stiefler Susanne, Seibert Kathrin, Domhoff Dominik, Wolf-Ostermann Karin, Peschke Dirk
Institut für Public Health und Pflegeforschung, Universität Bremen Fachbereich 11 Human- und Gesundheitswissenschaften, Bremen.
Department für Angewandte Gesundheitswissenschaften, Hochschule für Gesundheit Bochum, Bochum.
Gesundheitswesen. 2022 Feb;84(2):139-153. doi: 10.1055/a-1276-0525. Epub 2021 Apr 1.
To determine predictors of admission to nursing home by means of secondary data analysis of German statutory health insurance claims data and care needs assessments.
A retrospective longitudinal analysis was conducted covering the period 2006-2016 and using routine data. Health insurance data and care needs assessment data for people who became care dependent in 2006 and who lived in their own homes were merged. Cox regression analyses were conducted to identify predictors of admission to a nursing home.
The study population comprised 48,892 persons. Dementia, cancer of the brain, cognitive impairment, antipsychotics prescriptions, hospitalized fractures, hospital stays over ten days, and higher age had the highest hazard ratios among the predictors.
Knowledge about the predictors serves to sensitize health care professionals in the care of people in need of care. It facilitates identification of care needs in community-dwelling persons at an increased risk of admission to a nursing home.
通过对德国法定医疗保险理赔数据和护理需求评估进行二次数据分析,确定入住养老院的预测因素。
进行了一项回顾性纵向分析,涵盖2006 - 2016年期间并使用常规数据。将2006年开始需要护理且居住在自己家中的人员的医疗保险数据和护理需求评估数据进行合并。进行Cox回归分析以确定入住养老院的预测因素。
研究人群包括48,892人。在预测因素中,痴呆、脑癌、认知障碍、抗精神病药物处方、住院骨折、住院超过十天以及高龄的风险比最高。
了解这些预测因素有助于提高医护人员对需要护理者的护理意识。它有助于识别社区居住且入住养老院风险增加的人群的护理需求。