Huang Wei, Hu Gui-Bing, Liang Wen-Bin, Wang Jun-Mao, Lu Mei-Ling, Yuan Ruo, Xiao Dong-Rong
Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
Anal Chem. 2021 Apr 20;93(15):6239-6245. doi: 10.1021/acs.analchem.1c00636. Epub 2021 Apr 6.
Metal-organic frameworks (MOFs) with porous structures exhibit favorable promise in synthesizing high-performance electrochemiluminescence (ECL) materials, yet their micropores and narrow channels not only restrict the loading capacity of ECL luminophores but also constrain the diffusion of coreactants, ions, and electrons. Hence, we developed a new and simple hydrothermal etching strategy for the fabrication of a hollow hierarchical MOF (HH-UiO-66-NH) with a hierarchical-pore shell, which was employed as a carrier to graft Ru(bpy)(mcpbpy) (bpy = 2,2'-bipyridine, mcpbpy = 4-(4'-methyl-[2,2'-bipyridin]-4-yl) butanoic acid) onto the coordinatively unsaturated Zr nodes of HH-UiO-66-NH, creating the Ru-complex-grafted HH-UiO-66-NH (abbreviated as HH-Ru-UiO-66-NH). Impressively, the HH-Ru-UiO-66-NH presented brilliant ECL emission. On the one hand, the HH-UiO-66-NH with a hierarchical-pore shell and hollow cavity was conducive to immobilize the Ru(bpy)(mcpbpy) of large steric hindrance into the interior of the MOF, markedly improving the load number of luminophores. On the other hand, the hierarchical-pore shell of HH-UiO-66-NH permitted fast diffusion of coreactants, ions, and electrons that facilitated the excitation of more grafted luminophores and greatly enhanced the utilization ratio of ECL luminophores. Inspired by the superior ECL performance of HH-Ru-UiO-66-NH, an ECL sensing platform was constructed on the basis of HH-Ru-UiO-66-NH as an ECL beacon combining catalytic hairpin assembly as a signal amplification strategy, showing excellent selectivity and high sensitivity for thrombin determination. This proof-of-concept work proposed a simple and feasible hydrothermal etching strategy to construct hollow hierarchical MOFs that served as carrier materials to immobilize ECL luminophores, providing significant inspiration to develop highly efficient ECL materials and endowing hollow hierarchical MOFs with ECL sensing applications for the first time.
具有多孔结构的金属有机框架(MOFs)在合成高性能电化学发光(ECL)材料方面展现出良好的前景,然而其微孔和狭窄通道不仅限制了ECL发光体的负载能力,还制约了共反应剂、离子和电子的扩散。因此,我们开发了一种新型且简单的水热蚀刻策略,用于制备具有分级孔壳的中空分级MOF(HH-UiO-66-NH),将其用作载体,将Ru(bpy)(mcpbpy)(bpy = 2,2'-联吡啶,mcpbpy = 4-(4'-甲基-[2,2'-联吡啶]-4-基)丁酸)接枝到HH-UiO-66-NH的配位不饱和Zr节点上,制得Ru-络合物接枝的HH-UiO-66-NH(简称为HH-Ru-UiO-66-NH)。令人印象深刻的是,HH-Ru-UiO-66-NH呈现出明亮的ECL发射。一方面,具有分级孔壳和中空腔体的HH-UiO-66-NH有利于将空间位阻较大的Ru(bpy)(mcpbpy)固定在MOF内部,显著提高发光体的负载量。另一方面,HH-UiO-66-NH的分级孔壳允许共反应剂、离子和电子快速扩散,促进了更多接枝发光体的激发,并大大提高了ECL发光体的利用率。受HH-Ru-UiO-66-NH优异的ECL性能启发,基于HH-Ru-UiO-66-NH作为ECL信标构建了一个ECL传感平台,并结合催化发夹组装作为信号放大策略,对凝血酶测定表现出优异的选择性和高灵敏度。这项概念验证工作提出了一种简单可行的水热蚀刻策略来构建中空分级MOFs,作为固定ECL发光体的载体材料,为开发高效ECL材料提供了重要启示,并首次赋予中空分级MOFs ECL传感应用。