College of Intelligence and Computing, Tianjin University, Tianjin 300350, China.
Brief Bioinform. 2021 Sep 2;22(5). doi: 10.1093/bib/bbab051.
Noncoding RNAs (ncRNAs) play crucial roles in many biological processes. Experimental methods for identifying ncRNA-protein interactions (NPIs) are always costly and time-consuming. Many computational approaches have been developed as alternative ways. In this work, we collected five benchmarking datasets for predicting NPIs. Based on these datasets, we evaluated and compared the prediction performances of existing machine-learning based methods. Graph neural network (GNN) is a recently developed deep learning algorithm for link predictions on complex networks, which has never been applied in predicting NPIs. We constructed a GNN-based method, which is called Noncoding RNA-Protein Interaction prediction using Graph Neural Networks (NPI-GNN), to predict NPIs. The NPI-GNN method achieved comparable performance with state-of-the-art methods in a 5-fold cross-validation. In addition, it is capable of predicting novel interactions based on network information and sequence information. We also found that insufficient sequence information does not affect the NPI-GNN prediction performance much, which makes NPI-GNN more robust than other methods. As far as we can tell, NPI-GNN is the first end-to-end GNN predictor for predicting NPIs. All benchmarking datasets in this work and all source codes of the NPI-GNN method have been deposited with documents in a GitHub repo (https://github.com/AshuiRUA/NPI-GNN).
非编码 RNA(ncRNAs) 在许多生物过程中发挥着关键作用。鉴定 ncRNA-蛋白质相互作用(npis)的实验方法总是昂贵且耗时的。因此,许多计算方法被开发出来作为替代方法。在这项工作中,我们收集了五个用于预测 npis 的基准数据集。基于这些数据集,我们评估和比较了现有基于机器学习的方法的预测性能。图神经网络(GNN)是一种最近开发的用于复杂网络链路预测的深度学习算法,它从未被应用于预测 npis。我们构建了一种基于 GNN 的方法,称为使用图神经网络的非编码 RNA-蛋白质相互作用预测(NPI-GNN),用于预测 npis。在 5 折交叉验证中,NPI-GNN 方法的性能可与最先进的方法相媲美。此外,它还能够基于网络信息和序列信息预测新的相互作用。我们还发现,序列信息不足对 NPI-GNN 的预测性能影响不大,这使得 NPI-GNN 比其他方法更稳健。据我们所知,NPI-GNN 是第一个用于预测 npis 的端到端 GNN 预测器。这项工作中的所有基准数据集和 NPI-GNN 方法的所有源代码都已存储在 GitHub 存储库(https://github.com/AshuiRUA/NPI-GNN)中。