College of Data Science and Artificial Intelligence, Wenzhou University of Technology, 325027, Wenzhou, China.
College of Computer Science and Electronic Engineering, Hunan University, 410082, Changsha, China.
Brief Bioinform. 2022 Sep 20;23(5). doi: 10.1093/bib/bbac339.
Noncoding RNAs (ncRNAs) have recently attracted considerable attention due to their key roles in biology. The ncRNA-proteins interaction (NPI) is often explored to reveal some biological activities that ncRNA may affect, such as biological traits, diseases, etc. Traditional experimental methods can accomplish this work but are often labor-intensive and expensive. Machine learning and deep learning methods have achieved great success by exploiting sufficient sequence or structure information. Graph Neural Network (GNN)-based methods consider the topology in ncRNA-protein graphs and perform well on tasks like NPI prediction. Based on GNN, some pairwise constraint methods have been developed to apply on homogeneous networks, but not used for NPI prediction on heterogeneous networks. In this paper, we construct a pairwise constrained NPI predictor based on dual Graph Convolutional Network (GCN) called NPI-DGCN. To our knowledge, our method is the first to train a heterogeneous graph-based model using a pairwise learning strategy. Instead of binary classification, we use a rank layer to calculate the score of an ncRNA-protein pair. Moreover, our model is the first to predict NPIs on the ncRNA-protein bipartite graph rather than the homogeneous graph. We transform the original ncRNA-protein bipartite graph into two homogenous graphs on which to explore second-order implicit relationships. At the same time, we model direct interactions between two homogenous graphs to explore explicit relationships. Experimental results on the four standard datasets indicate that our method achieves competitive performance with other state-of-the-art methods. And the model is available at https://github.com/zhuoninnin1992/NPIPredict.
非编码 RNA(ncRNAs)由于其在生物学中的关键作用,最近引起了相当大的关注。ncRNA-蛋白质相互作用(NPI)经常被探索,以揭示 ncRNA 可能影响的一些生物活性,如生物特征、疾病等。传统的实验方法可以完成这项工作,但往往劳动强度大,成本高。机器学习和深度学习方法通过利用充足的序列或结构信息取得了巨大的成功。基于图神经网络(GNN)的方法考虑了 ncRNA-蛋白质图的拓扑结构,在 NPI 预测等任务上表现良好。基于 GNN,已经开发了一些成对约束方法来应用于同构图,但不适用于异构图上的 NPI 预测。在本文中,我们构建了一种基于对偶图卷积网络(GCN)的成对约束 NPI 预测器,称为 NPI-DGCN。据我们所知,我们的方法是第一个使用成对学习策略训练基于异构图的模型。我们没有使用二进制分类,而是使用秩层来计算 ncRNA-蛋白质对的分数。此外,我们的模型是第一个在 ncRNA-蛋白质二部图上预测 NPI 的模型,而不是在同构图上。我们将原始的 ncRNA-蛋白质二部图转换为两个同构图,以探索二阶隐式关系。同时,我们对两个同构图之间的直接相互作用进行建模,以探索显式关系。在四个标准数据集上的实验结果表明,我们的方法与其他最先进的方法具有竞争力。该模型可在 https://github.com/zhuoninnin1992/NPIPredict 上获取。