文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

木质纤维素水解物抑制剂对酿酒酵母和非酿酒酵母的可变和剂量依赖性响应。

Variable and dose-dependent response of Saccharomyces and non-Saccharomyces yeasts toward lignocellulosic hydrolysate inhibitors.

机构信息

Laboratory of Genetics and Biotechnology, EMBRAPA Agroenergy, Parque Estação Biológica, PqEB - W3 Norte Final s/no. 70., Brasília, DF, 770-901, Brazil.

Graduate Program of Chemical and Biological Technologies, Institute of Chemistry, University of Brasília, Brasília, Brazil.

出版信息

Braz J Microbiol. 2021 Jun;52(2):575-586. doi: 10.1007/s42770-021-00489-0. Epub 2021 Apr 6.


DOI:10.1007/s42770-021-00489-0
PMID:33825150
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8105477/
Abstract

Lignocellulosic hydrolysates will also contain compounds that inhibit microbial metabolism, such as organic acids, furaldehydes, and phenolic compounds. Understanding the response of yeasts toward such inhibitors is important to the development of different bioprocesses. In this work, the growth capacity of 7 industrial Saccharomyces cerevisiae and 7 non-Saccharomyces yeasts was compared in the presence of 3 different concentrations of furaldehydes (furfural and 5-hydroxymetil-furfural), organic acids (acetic and formic acids), and phenolic compounds (vanillin, syringaldehyde, ferulic, and coumaric acids). Then, Candida tropicalis JA2, Meyerozyma caribbica JA9, Wickerhamomyces anomalus 740, S. cerevisiae JP1, B1.1, and G06 were selected for fermentation in presence of acetic acid, HMF, and vanillin because they proved to be most tolerant to the tested compounds, while Spathaspora sp. JA1 because its xylose consumption rate. The results obtained showed a dose-dependent response of the yeasts toward the eight different inhibitors. Among the compared yeasts, S. cerevisiae strains presented higher tolerance than non-Saccharomyces, 3 of them with the highest tolerance among all. Regarding the non-Saccharomyces yeasts, C. tropicalis JA2 and W. anomalus 740 appeared as the most tolerant, whereas Spathaspora strains appeared very sensitive to the different compounds.

摘要

木质纤维素水解物还将包含抑制微生物代谢的化合物,如有机酸、糠醛和酚类化合物。了解酵母对这些抑制剂的反应对于不同生物过程的发展非常重要。在这项工作中,比较了 7 种工业酿酒酵母和 7 种非酿酒酵母在 3 种不同浓度的糠醛(糠醛和 5-羟甲基糠醛)、有机酸(乙酸和甲酸)和酚类化合物(香草醛、丁香醛、阿魏酸和香豆酸)存在下的生长能力。然后,选择热带假丝酵母 JA2、卡氏毕赤酵母 JA9、异常威克汉姆酵母 740、酿酒酵母 JP1、B1.1 和 G06 在存在乙酸、HMF 和香草醛的情况下进行发酵,因为它们被证明对测试化合物具有最高的耐受性,而 Spathaspora sp. JA1 因为其木糖消耗率。所得结果表明,酵母对 8 种不同抑制剂的反应呈剂量依赖性。在所比较的酵母中,酿酒酵母菌株比非酿酒酵母具有更高的耐受性,其中 3 种菌株具有所有菌株中最高的耐受性。关于非酿酒酵母,热带假丝酵母 JA2 和异常威克汉姆酵母 740 表现出最高的耐受性,而 Spathaspora 菌株对不同化合物非常敏感。

相似文献

[1]
Variable and dose-dependent response of Saccharomyces and non-Saccharomyces yeasts toward lignocellulosic hydrolysate inhibitors.

Braz J Microbiol. 2021-6

[2]
Xylose consumption and ethanol production by Pichia guilliermondii and Candida oleophila in the presence of furans, phenolic compounds, and organic acids commonly produced during the pre-treatment of plant biomass.

Braz J Microbiol. 2023-6

[3]
Inhibitor tolerance of a recombinant flocculating industrial Saccharomyces cerevisiae strain during glucose and xylose co-fermentation.

Braz J Microbiol. 2017

[4]
Improving Acetic Acid and Furfural Resistance of Xylose-Fermenting Saccharomyces cerevisiae Strains by Regulating Novel Transcription Factors Revealed via Comparative Transcriptomic Analysis.

Appl Environ Microbiol. 2021-4-27

[5]
[Inhibitors and their effects on Saccharomyces cerevisiae and relevant countermeasures in bioprocess of ethanol production from lignocellulose--a review].

Sheng Wu Gong Cheng Xue Bao. 2009-9

[6]
Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments.

J Biosci Bioeng. 2017-3

[7]
Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural.

J Biosci Bioeng. 2013-8-3

[8]
Physiological and comparative genomic analysis of new isolated yeasts Spathaspora sp. JA1 and Meyerozyma caribbica JA9 reveal insights into xylitol production.

FEMS Yeast Res. 2019-6-1

[9]
Metabolomic study of interactive effects of phenol, furfural, and acetic acid on Saccharomyces cerevisiae.

OMICS. 2011-10

[10]
Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors.

Bioresour Technol. 2007-7

本文引用的文献

[1]
Suppression of a BAHD acyltransferase decreases p-coumaroyl on arabinoxylan and improves biomass digestibility in the model grass Setaria viridis.

Plant J. 2021-1

[2]
Xylitol production on sugarcane biomass hydrolysate by newly identified Candida tropicalis JA2 strain.

Yeast. 2019-5

[3]
Understanding the tolerance of the industrial yeast Saccharomyces cerevisiae against a major class of toxic aldehyde compounds.

Appl Microbiol Biotechnol. 2018-5-3

[4]
Purification and characterization of xylitol dehydrogenase with l-arabitol dehydrogenase activity from the newly isolated pentose-fermenting yeast Meyerozyma caribbica 5XY2.

J Biosci Bioeng. 2017-1

[5]
Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects.

Bioresour Technol. 2015-10-13

[6]
High vanillin tolerance of an evolved Saccharomyces cerevisiae strain owing to its enhanced vanillin reduction and antioxidative capacity.

J Ind Microbiol Biotechnol. 2014-9-28

[7]
Effects of aeration on growth, ethanol and polyol accumulation by Spathaspora passalidarum NRRL Y-27907 and Scheffersomyces stipitis NRRL Y-7124.

Biotechnol Bioeng. 2015-3

[8]
Biotransformation of 5-hydroxymethylfurfural (HMF) by Scheffersomyces stipitis during ethanol fermentation of hydrolysate of the seaweed Gelidium amansii.

Bioresour Technol. 2013-5-9

[9]
Genetic characterization and construction of an auxotrophic strain of Saccharomyces cerevisiae JP1, a Brazilian industrial yeast strain for bioethanol production.

J Ind Microbiol Biotechnol. 2012-8-15

[10]
Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering.

Biotechnol Adv. 2011-11-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索