Suppr超能文献

肿瘤浸润淋巴细胞在宫颈癌中的预后意义。

The prognostic significance of tumor-infiltrating lymphocytes in cervical cancer.

机构信息

Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.

Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.

出版信息

J Gynecol Oncol. 2021 May;32(3):e32. doi: 10.3802/jgo.2021.32.e32.

Abstract

OBJECTIVE

To predict the prognosis of cervical cancer, we constructed a novel model with 5 specific cell types and identified a potential biomarker.

METHODS

We employed CIBERSORT and xCell method to evaluate the abundances of 23 cells types in tumor microenvironment. Five specific cell types were filtrated to determine different immunotypes by applying least absolute shrinkage and selection operator (LASSO) Cox regression method. The expression of immune checkpoints (ICPs) and effectors were validated by immunohistochemistry. Correlation analysis was performed to examine the relevance between PIK3CA mutational status and ICPs.

RESULTS

Unsupervised clustering of patients on the basis of tumor infiltrating lymphocytes and fibroblasts identified patients with shorter overall survival (OS) (hazard ratio [HR]=3.0729; 95% confidence interval [CI]=1.5103-6.2522; p=0.0118). An immunoscore (IS) signature consisting of 5 immune cell types infiltrating in tumor core (CD8T, activated NK cells, neutrophils, activated mast cells, macrophages) was constructed using LASSO Cox regression analysis. Receiver operating characteristic curves confirmed that the area under the curve of IS was significantly higher to that of International Federation of Gynecology and Obstetrics staging alone (0.637 vs. 0.55). Survival analysis revealed patients in high IS group exhibited a poorer OS (HR=3.0113; 95% CI=1.8746-4.8373; p<0.0001). The multivariate analysis indicated the IS was an independent prognostic factor. In addition, the lower IS related to higher expression of ICPs and neoantigen load.

CONCLUSIONS

The identification of IS in cervical cancer tissues could facilitate patient risk stratification and selection of immunotherapeutic responses, but more prospective studies are needed to assess its reliability.

摘要

目的

为了预测宫颈癌的预后,我们构建了一个包含 5 种特定细胞类型的新型模型,并鉴定了一个潜在的生物标志物。

方法

我们采用 CIBERSORT 和 xCell 方法评估肿瘤微环境中 23 种细胞类型的丰度。通过应用最小绝对收缩和选择算子(LASSO)Cox 回归方法,筛选出 5 种特定细胞类型,以确定不同的免疫表型。通过免疫组织化学验证免疫检查点(ICPs)和效应物的表达。进行相关性分析以检查 PIK3CA 突变状态与 ICPs 之间的相关性。

结果

基于肿瘤浸润淋巴细胞和成纤维细胞对患者进行无监督聚类,发现总生存(OS)较短的患者(风险比 [HR]=3.0729;95%置信区间 [CI]=1.5103-6.2522;p=0.0118)。使用 LASSO Cox 回归分析构建了一个由肿瘤核心浸润的 5 种免疫细胞类型(CD8T、活化的 NK 细胞、中性粒细胞、活化的肥大细胞、巨噬细胞)组成的免疫评分(IS)特征。受试者工作特征曲线证实,IS 的曲线下面积明显高于国际妇产科联合会分期单独的曲线下面积(0.637 与 0.55)。生存分析显示,IS 高的患者 OS 较差(HR=3.0113;95%CI=1.8746-4.8373;p<0.0001)。多因素分析表明,IS 是独立的预后因素。此外,IS 越低与 ICPs 和新抗原负荷表达越高相关。

结论

在宫颈癌组织中鉴定 IS 可以促进患者风险分层和免疫治疗反应的选择,但需要更多的前瞻性研究来评估其可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/784c/8039170/bfa555d246da/jgo-32-e32-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验