Lee Jinho, Tüysüz Harun
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany.
Department of Physics, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea.
ChemSusChem. 2021 Jun 8;14(11):2393-2400. doi: 10.1002/cssc.202100585. Epub 2021 May 7.
Achieving long-term device stability is one of the most challenging issues that impede the commercialization of perovskite solar cells (PSCs). Recent studies have emphasized the significant role of the cathode interfacial layer (CIL) in determining the stability of inverted p-i-n PSCs. However, experimental investigations focusing on the influence of the CIL on PSC degradation have not been systematically carried out to date. In this study, a comparative analysis was performed on the PSC device stability by using four different CILs including practical oxides like ZnO and TiO . A new implemented co-doping approach was found to results in high device performance and enhanced device stability. The PSC with a thick film configuration of chemically modified TiO CIL preserves over 77 % of its initial efficiencies of 17.24 % for 300 h under operational conditions without any encapsulation. The PSCs developed are among the most stable reported for methylammonium lead iodide (MAPbI ) perovskite compositions.
实现长期器件稳定性是阻碍钙钛矿太阳能电池(PSC)商业化的最具挑战性的问题之一。最近的研究强调了阴极界面层(CIL)在决定倒置p-i-n PSC稳定性方面的重要作用。然而,迄今为止,尚未系统地开展聚焦于CIL对PSC降解影响的实验研究。在本研究中,通过使用包括ZnO和TiO等实用氧化物在内的四种不同CIL,对PSC器件稳定性进行了对比分析。发现一种新实施的共掺杂方法可实现高器件性能并增强器件稳定性。具有化学改性TiO CIL厚膜结构的PSC在无任何封装的运行条件下,300小时内可保持其17.24%初始效率的77%以上。所开发的PSC是报道的甲基铵碘化铅(MAPbI)钙钛矿组合物中最稳定的之一。