Suppr超能文献

仿生细胞硅化:从细胞外到细胞内。

Bioinspired Cell Silicification: From Extracellular to Intracellular.

机构信息

MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China.

Center for Micro-Engineered Materials, Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, United States.

出版信息

J Am Chem Soc. 2021 May 5;143(17):6305-6322. doi: 10.1021/jacs.1c00814. Epub 2021 Apr 7.

Abstract

In nature, biosilicification directs the formation of elaborate amorphous silica exoskeletons that provide diatoms mechanically strong, chemically inert, non-decomposable silica armor conferring chemical and thermal stability as well as resistance to microbial attack, without changing the optical transparency or adversely effecting nutrient and waste exchange required for growth. These extraordinary silica/cell biocomposites have inspired decades of biomimetic research aimed at replication of diatoms' hierarchically organized exoskeletons, immobilization of cells or living organisms within silica matrices and coatings to protect them against harmful external stresses, genetic re-programming of cellular functions by virtue of physico-chemical confinement within silica, cellular integration into devices, and endowment of cells with non-native, abiotic properties through facile silica functionalization. In this Perspective, we focus our discussions on the development and concomitant challenges of bioinspired cell silicification ranging from "cells encapsulated within 3D silica matrices" and "cells encapsulated within 2D silica shells" to extra- and intracellular silica replication, wherein all biomolecular interfaces are encased within nanoscopic layers of amorphous silica. We highlight notable examples of advances in the science and technology of biosilicification and consider challenges to advancing the field, where we propose cellular "mineralization" with arbitrary nanoparticle exoskeletons as a generalizable means to impart limitless abiotic properties and functions to cells, and, based on the interchangeability of water and silicic acid and analogies between amorphous ice and amorphous silica, we consider "freezing" cells within amorphous silica as an alternative to cryo-preservation.

摘要

在自然界中,生物矿化指导着复杂的无定形硅外壳的形成,为硅藻提供了机械强度高、化学惰性、不可分解的硅质盔甲,赋予其化学和热稳定性以及抗微生物攻击的能力,同时保持光学透明度,不会对生长所需的营养物质和废物交换产生不利影响。这些非凡的硅/细胞生物复合材料激发了几十年来的仿生研究,旨在复制硅藻的分层外骨骼、将细胞或生物体固定在硅基质和涂层内,以保护它们免受有害外部压力的影响、通过物理化学限制在硅内对细胞功能进行遗传重新编程、细胞整合到设备中以及通过简便的硅官能化赋予细胞非天然的、无生命的特性。在本观点中,我们专注于仿生细胞硅化的发展和伴随的挑战,范围从“细胞封装在 3D 硅基质内”和“细胞封装在 2D 硅壳内”到细胞内外硅的复制,其中所有生物分子界面都被包裹在无定形硅的纳米层内。我们强调了生物矿化科学和技术方面的显著进展,并考虑了推进该领域的挑战,我们提出用任意纳米颗粒外骨骼对细胞进行“矿化”作为赋予细胞无限非生命特性和功能的通用方法,并且基于水和硅酸的可互换性以及无定形冰和无定形硅之间的类比,我们考虑将细胞“冻结”在无定形硅内作为冷冻保存的替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验