Suppr超能文献

通过生物聚合物和细胞进行仿生溶胶-凝胶化学以定制生物纳米复合材料的结构、性质和功能

Biomimetic Sol-Gel Chemistry to Tailor Structure, Properties, and Functionality of Bionanocomposites by Biopolymers and Cells.

作者信息

Shchipunov Yury

机构信息

Institute of Chemistry, Far East Department, Russian Academy of Sciences, Vladivostok 690022, Russia.

出版信息

Materials (Basel). 2023 Dec 30;17(1):224. doi: 10.3390/ma17010224.

Abstract

Biosilica, synthesized annually only by diatoms, is almost 1000 times more abundant than industrial silica. Biosilicification occurs at a high rate, although the concentration of silicic acid in natural waters is ~100 μM. It occurs in neutral aqueous solutions, at ambient temperature, and under the control of proteins that determine the formation of hierarchically organized structures. Using diatoms as an example, the fundamental differences between biosilicification and traditional sol-gel technology, which is performed with the addition of acid/alkali, organic solvents and heating, have been identified. The conditions are harsh for the biomaterial, as they cause protein denaturation and cell death. Numerous attempts are being made to bring sol-gel technology closer to biomineralization processes. Biomimetic synthesis must be conducted at physiological pH, room temperature, and without the addition of organic solvents. To date, significant progress has been made in approaching these requirements. The review presents a critical analysis of the approaches proposed to date for the silicification of biomacromolecules and cells, the formation of bionanocomposites with controlled structure, porosity, and functionality determined by the biomaterial. They demonstrated the broad capabilities and prospects of biomimetic methods for creating optical and photonic materials, adsorbents, catalysts and biocatalysts, sensors and biosensors, and biomaterials for biomedicine.

摘要

生物二氧化硅仅由硅藻每年合成,其含量几乎比工业二氧化硅丰富1000倍。尽管天然水中硅酸的浓度约为100μM,但生物硅化作用仍以高速率发生。它发生在中性水溶液中,在环境温度下,并受决定分层组织结构形成的蛋白质控制。以硅藻为例,已确定了生物硅化作用与传统溶胶 - 凝胶技术之间的根本差异,传统溶胶 - 凝胶技术是在添加酸/碱、有机溶剂并加热的情况下进行的。这些条件对生物材料来说很苛刻,因为它们会导致蛋白质变性和细胞死亡。人们正在进行大量尝试,以使溶胶 - 凝胶技术更接近生物矿化过程。仿生合成必须在生理pH值、室温下进行,且不添加有机溶剂。迄今为止,在满足这些要求方面已取得了重大进展。该综述对迄今为止提出的用于生物大分子和细胞硅化、形成具有可控结构、孔隙率和由生物材料决定的功能的生物纳米复合材料的方法进行了批判性分析。它们展示了仿生方法在制造光学和光子材料、吸附剂、催化剂和生物催化剂、传感器和生物传感器以及生物医学用生物材料方面的广泛能力和前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9465/10779932/4be3ccf8885a/materials-17-00224-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验