Suppr超能文献

基于结构的虚拟筛选鉴定新型抗结核分枝杆菌肽聚糖生物合成 Mur 酶的多靶位抑制剂。

Identification of novel multitarget antitubercular inhibitors against mycobacterial peptidoglycan biosynthetic Mur enzymes by structure-based virtual screening.

机构信息

School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India.

出版信息

J Biomol Struct Dyn. 2022 Nov;40(18):8185-8196. doi: 10.1080/07391102.2021.1908913. Epub 2021 Apr 7.

Abstract

Current therapeutic strategies for several diseases, including infection, have evolved from an initial single-target treatment to a multitarget one. A multitarget antitubercular drugs targeting different mycobacterial proteins are more effective at suppressing bacterial growth. In this study, a high throughput virtual screening was performed to identify hits to the potential antitubercular multitarget: murA, murB, murC, murD, murE, murF, murG and murI from that is involved in peptidoglycan biosynthesis. In the virtual screening, we were docked 56,400 compounds of the ChEMBL antimycobacterial library and re-scored and identified the top 10 ranked compounds as antitubercular drug candidates. Further, the best common docked complex CHEMBL446262 was subjected to molecular dynamics simulation to understand the molecule's stability in the presence of an active site environment. After that, we have calculated binding free energy the top-ranked docked complexes using the MM/PBSA method. These ligands exhibited the highest binding affinity; find out novel drug-likeness might show the effect's inhibitor by interacting with multitarget Mur enzymes. New antitubercular therapies that include multitarget drugs may have higher efficacy than single-target medicines and provide a more straightforward antitubercular therapy regimen.Communicated by Ramaswamy H. Sarma.

摘要

目前,包括感染在内的多种疾病的治疗策略已经从最初的单一靶点治疗演变为多靶点治疗。针对不同分枝杆菌蛋白的多靶点抗结核药物在抑制细菌生长方面更有效。在这项研究中,我们进行了高通量虚拟筛选,以鉴定潜在的抗结核多靶点的命中物:涉及肽聚糖生物合成的 murA、murB、murC、murD、murE、murF、murG 和 murI。在虚拟筛选中,我们对接了 ChEMBL 抗分枝杆菌库中的 56400 种化合物,并对其进行了重新评分,确定了排名前 10 的化合物作为抗结核药物候选物。此外,最佳共同对接复合物 CHEMBL446262 被进行了分子动力学模拟,以了解分子在活性位点环境中的稳定性。之后,我们使用 MM/PBSA 方法计算了排名靠前的对接复合物的结合自由能。这些配体表现出最高的结合亲和力;通过与多靶点 Mur 酶相互作用,可能发现新的药物样化合物具有抑制作用。包含多靶点药物的新抗结核疗法可能比单一靶点药物更有效,并提供更直接的抗结核治疗方案。由 Ramaswamy H. Sarma 传达。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验