Ros Carles, Murcia-López Sebastian, Garcia Xenia, Rosado Marcos, Arbiol Jordi, Llorca Jordi, Morante Joan R
Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 08930 Sant Adrià del Besòs, Barcelona, Spain.
Institute of Energy Technologies, Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 10-14, 08019, Barcelona, Spain.
ChemSusChem. 2021 Jul 22;14(14):2872-2881. doi: 10.1002/cssc.202100194. Epub 2021 Jun 16.
Hydrogen, produced by water splitting, has been proposed as one of the main green energy vectors of the future if produced from renewable energy sources. However, to substitute fossil fuels, large amounts of pure water are necessary, scarce in many world regions. In this work, we fabricate efficient and earth-abundant electrodes, study the challenges of using real seawater, and propose an electrode regeneration method to face undesired salt deposition. Ni-Mo-Fe trimetallic electrocatalyst is deposited on non-expensive graphitic carbon felts both for hydrogen (HER) and oxygen evolution reactions (OER) in seawater and alkaline seawater. Cl pitting and the chlorine oxidation reaction are suppressed on these substrates and alkalinized electrolyte. Precipitations on the electrodes, mainly CaCO , originating from seawater-dissolved components have been studied, and a simple regeneration technique is proposed to rapidly dissolve undesired deposited CaCO in acidified seawater. Under alkaline conditions, Ni-Mo-Fe-based catalyst is found to reconfigure, under cathodic bias, into Ni-Mo-Fe alloy with a cubic crystalline structure and Ni : Fe(OH) redeposits whereas, under anodic bias, it is transformed into a follicular Ni:FeOOH structure. High productivities over 300 mA cm and voltages down to 1.59 V@10 mA cm for the overall water splitting reaction have been shown, and electrodes are found stable for over 24 h without decay in alkaline seawater conditions and with energy efficiency higher than 61.5 % which makes seawater splitting promising and economically feasible.
由水分解产生的氢气,如果由可再生能源生产,已被提议作为未来主要的绿色能源载体之一。然而,要替代化石燃料,需要大量的纯净水,而在世界许多地区,纯净水是稀缺的。在这项工作中,我们制备了高效且储量丰富的电极,研究了使用实际海水的挑战,并提出了一种电极再生方法来应对不希望出现的盐沉积。将Ni-Mo-Fe三金属电催化剂沉积在廉价的石墨碳毡上,用于海水和碱性海水中的析氢反应(HER)和析氧反应(OER)。在这些基底和碱化电解质上,Cl点蚀和氯氧化反应受到抑制。研究了电极上主要源于海水中溶解成分的CaCO沉淀,并提出了一种简单的再生技术,用于在酸化海水中快速溶解不希望沉积的CaCO。在碱性条件下,发现基于Ni-Mo-Fe的催化剂在阴极偏压下会重新配置成具有立方晶体结构的Ni-Mo-Fe合金和Ni:Fe(OH)再沉积层,而在阳极偏压下,它会转变为滤泡状的Ni:FeOOH结构。对于全水分解反应,已展示出超过300 mA cm的高生产率和低至1.59 V@10 mA cm的电压,并且发现电极在碱性海水条件下稳定超过24小时而不衰减,能量效率高于61.5%,这使得海水分解具有前景且在经济上可行。