Suppr超能文献

基于深度学习方法的新型眼睑自动形态分析

A Novel Automatic Morphologic Analysis of Eyelids Based on Deep Learning Methods.

机构信息

Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, Zhejiang, China.

Department of Technology, Hangzhou Truth Medical Technology Ltd, Hangzhou, Zhejiang, China.

出版信息

Curr Eye Res. 2021 Oct;46(10):1495-1502. doi: 10.1080/02713683.2021.1908569. Epub 2021 Jun 14.

Abstract

: To propose a deep-learning-based approach to automatically and objectively evaluate morphologic eyelid features using two-dimensional(2D) digital photographs and to assess the agreement between automatic and manual measurements.: The 2D photographs of 1378 normal Asian participants (2756 eyes) were included for training, validating and testing the cornea and eyelid segmentation network. Margin reflex distance 1 (MRD1) and margin reflex distance 2 (MRD2) of 406 eyes from 203 participants were manually evaluated by 3 ophthalmologists and the photographs of 406 eyes were measured automatically for 8 morphologic eyelid features. The Spearman's correlation coefficient, intra-class correlation coefficient (ICC) and Bland-Altman analyses were used to determine the agreement between manual and automatic MRDs.: The dice coefficient was 0.922 and 0.974 for eyelid and cornea segmentation, respectively. A strong correlation was shown between manually and automatically measured MRD1 (r = 0.993, ICC = 0.996) and MRD2 (r = 0.950, ICC = 0.974). Bland-Altman analyses also showed excellent reliability with bias being 0.04 mmbetween automated and manual MRD1 measurements and 0.06 mm for MRD2. Automatically measured 8 features (MRD1, MRD2, palpebral fissure, medial area, lateral area, cornea area, upper and lower eyelid lengths) were found to be increased with age and peaked around the age range of 21 to 30 years.: The proposed novel integrative analysis scheme was comparable with human performance. The approach with excellent reliability and reproductivity showed great potential for automated diagnosis and remote monitoring of eyelid-related diseases.

摘要

提出一种基于深度学习的方法,使用二维(2D)数字照片自动客观地评估形态学眼睑特征,并评估自动测量和手动测量之间的一致性。纳入 1378 名正常亚洲参与者(2756 只眼)的 2D 照片用于训练、验证和测试角膜和眼睑分割网络。由 3 名眼科医生手动评估 203 名参与者的 406 只眼的角膜和眼睑形态学参数(MRD1 和 MRD2),并自动测量 406 只眼的 8 个眼睑形态学参数。采用 Spearman 相关系数、组内相关系数(ICC)和 Bland-Altman 分析来确定手动和自动 MRD 之间的一致性。眼睑和角膜分割的 Dice 系数分别为 0.922 和 0.974。手动和自动测量的 MRD1(r=0.993,ICC=0.996)和 MRD2(r=0.950,ICC=0.974)之间显示出很强的相关性。 Bland-Altman 分析也显示出很好的可靠性,自动测量的 MRD1 与手动测量的平均偏差为 0.04mm,MRD2 的平均偏差为 0.06mm。自动测量的 8 个特征(MRD1、MRD2、睑裂、内侧面积、外侧面积、角膜面积、上睑和下睑长度)随年龄增长而增加,并在 21 至 30 岁左右达到峰值。所提出的新的综合分析方案与人类表现相当。该方法具有出色的可靠性和可重复性,在自动诊断和眼睑相关疾病的远程监测方面具有很大的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验