Suppr超能文献

基于人工智能的工具用于通过智能手机录制的自拍视频片段测量成年重症肌无力患者上睑下垂的开发与评估

Development and Assessment of an Artificial Intelligence-Based Tool for Ptosis Measurement in Adult Myasthenia Gravis Patients Using Selfie Video Clips Recorded on Smartphones.

作者信息

Lootus Meelis, Beatson Lulu, Atwood Lucas, Bourdais Theo, Steyaert Sandra, Sarabu Chethan, Framroze Zeenia, Dickinson Harriet, Steels Jean-Christophe, Lewis Emily, Shah Nirav R, Rinaldo Francesca

机构信息

Sharecare Inc., Atlanta, GA, USA.

Stanford University, Center for Bioinformatics Research, Palo Alto, CA, USA.

出版信息

Digit Biomark. 2023 Jul 28;7(1):63-73. doi: 10.1159/000531224. eCollection 2023 Jan-Dec.

Abstract

INTRODUCTION

Myasthenia gravis (MG) is a rare autoimmune disease characterized by muscle weakness and fatigue. Ptosis (eyelid drooping) occurs due to fatigue of the muscles for eyelid elevation and is one symptom widely used by patients and healthcare providers to track progression of the disease. Margin reflex distance 1 (MRD1) is an accepted clinical measure of ptosis and is typically assessed using a hand-held ruler. In this work, we develop an AI model that enables automated measurement of MRD1 in self-recorded video clips collected using patient smartphones.

METHODS

A 3-month prospective observational study collected a dataset of video clips from patients with MG. Study participants were asked to perform an eyelid fatigability exercise to elicit ptosis while filming "selfie" videos on their smartphones. These images were collected in nonclinical settings, with no in-person training. The dataset was annotated by non-clinicians for (1) eye landmarks to establish ground truth MRD1 and (2) the quality of the video frames. The ground truth MRD1 (in millimeters, mm) was calculated from eye landmark annotations in the video frames using a standard conversion factor, the horizontal visible iris diameter of the human eye. To develop the model, we trained a neural network for eye landmark detection consisting of a ResNet50 backbone plus two dense layers of 78 dimensions on publicly available datasets. Only the ResNet50 backbone was used, discarding the last two layers. The embeddings from the ResNet50 were used as features for a support vector regressor (SVR) using a linear kernel, for regression to MRD1, in mm. The SVR was trained on data collected remotely from MG patients in the prospective study, split into training and development folds. The model's performance for MRD1 estimation was evaluated on a separate test fold from the study dataset.

RESULTS

On the full test fold ( = 664 images), the correlation between the ground truth and predicted MRD1 values was strong ( = 0.732). The mean absolute error was 0.822 mm; the mean of differences was -0.256 mm; and 95% limits of agreement (LOA) were -0.214-1.768 mm. Model performance showed no improvement when test data were gated to exclude "poor" quality images.

CONCLUSIONS

On data generated under highly challenging real-world conditions from a variety of different smartphone devices, the model predicts MRD1 with a strong correlation ( = 0.732) between ground truth and predicted MRD1.

摘要

引言

重症肌无力(MG)是一种罕见的自身免疫性疾病,其特征为肌肉无力和疲劳。上睑下垂(眼睑下垂)是由于提上睑肌疲劳所致,是患者和医疗服务提供者广泛用于追踪疾病进展的一种症状。边缘反射距离1(MRD1)是一种公认的上睑下垂临床测量指标,通常使用手持直尺进行评估。在本研究中,我们开发了一种人工智能模型,该模型能够对患者使用智能手机收集的自录视频片段中的MRD1进行自动测量。

方法

一项为期3个月的前瞻性观察性研究收集了MG患者的视频片段数据集。研究参与者被要求在使用智能手机拍摄“自拍”视频时进行眼睑疲劳运动以诱发上睑下垂。这些图像是在非临床环境中收集的,没有进行现场培训。该数据集由非临床医生标注,用于(1)眼部标志点以确定MRD1的真实值,以及(2)视频帧的质量。MRD1的真实值(以毫米为单位,mm)是根据视频帧中的眼部标志点标注,使用标准转换因子(人眼水平可见虹膜直径)计算得出的。为了开发该模型,我们在公开可用的数据集上训练了一个用于眼部标志点检测的神经网络,该网络由一个ResNet50主干加上两个78维的全连接层组成。仅使用ResNet50主干,舍弃最后两层。ResNet50的嵌入特征被用作支持向量回归器(SVR)的特征,使用线性核,用于将MRD1回归到以毫米为单位的值。SVR在前瞻性研究中从MG患者远程收集的数据上进行训练,分为训练集和开发集。该模型对MRD1估计的性能在研究数据集的一个单独测试集上进行评估。

结果

在完整测试集(n = 664张图像)上,真实值与预测的MRD1值之间的相关性很强(r = 0.732)。平均绝对误差为0.822毫米;差值的均值为 -0.256毫米;95%一致性界限(LOA)为 -0.214 - 1.768毫米。当对测试数据进行筛选以排除“质量差”的图像时,模型性能没有改善。

结论

在由各种不同智能手机设备在极具挑战性的现实世界条件下生成的数据上,该模型预测的MRD1与真实值之间具有很强的相关性(r = 0.732)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d299/10399113/22dffe277843/dib-2023-0007-0001-531224_F01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验