Institute of Cancer Biology and Drug Screening, College of Life Sciences, Lanzhou University, Lanzhou, Gansu, China.
The Center for Microbes, Development and Health, Chinese Academy of Sciences Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
J Immunol. 2021 May 1;206(9):2061-2074. doi: 10.4049/jimmunol.2000989. Epub 2021 Apr 7.
The recently identified anion channel LRRC8 volume-regulated anion channels (VRACs) are heteromeric hexamers constituted with the obligate LRRC8A subunit paired with at least one of the accessory LRRC8B to LRRC8E subunits. In addition to transport chloride, taurine, and glutamate, LRRC8 VRACs also transport the anticancer agent cisplatin and STING agonists 2'3'-cyclic GMP-AMP (cGAMP) and cyclic dinucleotides; hence, they are implicated in a variety of physiological and pathological processes, such as cell swelling, stroke, cancer, and viral infection. Although the subunit composition largely determines VRAC substrate specificity, the opening of various VRAC pores under physiological and pathological settings remains enigmatic. In this study, we demonstrated that VRACs comprising LRRC8A and LRRC8E (LRRC8A/E-containing VRACs), specialized in cGAMP transport, can be opened by a protein component present in serum under resting condition. Serum depletion ablated the tonic activity of LRRC8A/E-containing VRACs, decreasing cGAMP transport in various human and murine cells. Also, heating or proteinase K treatment abolished the ability of serum to activate VRAC. Genetic analyses revealed a crucial role for cGAMP synthase (cGAS) in serum/TNF-promoted VRAC activation. Notably, the presence of cGAS on the plasma membrane, rather than its DNA-binding or enzymatic activity, enabled VRAC activation. Moreover, phospholipid PIP2 seemed to be instrumental in the membrane localization of cGAS and its association with VRACs. Corroborating a role for LRRC8A/D-containing VRACs in cisplatin transport, serum and TNF markedly potentiated cisplatin uptake and killing of cancer cells derived from human or mouse. Together, these observations provide new insights into the complex regulation of VRAC activation and suggest a novel approach to enhance the efficacy of cGAMP and cisplatin in treating infection and cancer.
最近发现的阴离子通道 LRRC8 体积调节阴离子通道(VRAC)是由必需的 LRRC8A 亚基与至少一个辅助 LRRC8B 至 LRRC8E 亚基组成的异源六聚体。除了转运氯离子、牛磺酸和谷氨酸外,LRRC8 VRAC 还转运抗癌药物顺铂和 STING 激动剂 2'3'-环鸟苷酸-AMP(cGAMP)和环二核苷酸;因此,它们参与了多种生理和病理过程,如细胞肿胀、中风、癌症和病毒感染。尽管亚基组成在很大程度上决定了 VRAC 底物特异性,但在生理和病理条件下各种 VRAC 孔的开放仍然是个谜。在这项研究中,我们证明了由 LRRC8A 和 LRRC8E(包含 LRRC8A/E 的 VRAC)组成的 VRAC 专门用于 cGAMP 转运,在静息状态下可以被血清中的一种蛋白质成分打开。血清耗竭消除了包含 LRRC8A/E 的 VRAC 的紧张活动,降低了各种人和鼠细胞中的 cGAMP 转运。此外,加热或蛋白酶 K 处理消除了血清激活 VRAC 的能力。遗传分析揭示了 cGAMP 合酶(cGAS)在血清/TNF 促进的 VRAC 激活中的关键作用。值得注意的是,cGAS 在质膜上的存在,而不是其 DNA 结合或酶活性,使 VRAC 得以激活。此外,磷脂 PIP2 似乎在 cGAS 的膜定位及其与 VRAC 的关联中起着重要作用。LRRC8A/D 包含的 VRAC 在顺铂转运中的作用得到证实,血清和 TNF 显著增强了源自人和鼠的癌细胞对顺铂的摄取和杀伤。总之,这些观察结果为 VRAC 激活的复杂调节提供了新的见解,并提出了一种增强 cGAMP 和顺铂治疗感染和癌症疗效的新方法。