Suppr超能文献

可注射类弹性蛋白多肽与透明质酸混合水凝胶在兔声带中的生物相容性和粘弹性特性

Biocompatibility and Viscoelastic Properties of Injectable Resilin-Like Polypeptide and Hyaluronan Hybrid Hydrogels in Rabbit Vocal Folds.

作者信息

King Renee E, Lau Hang Kuen, Zhang Haiyan, Sidhu Ishnoor, Christensen Michael B, Fowler Eric W, Li Linqing, Jia Xinqiao, Kiick Kristi L, Thibeault Susan L

机构信息

Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, 5118 WIMR, 1111 Highland Ave, Madison, WI 53705-2275, USA.

Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Goodnight Hall, 1975 Willow Dr, Madison, WI 53706, USA.

出版信息

Regen Eng Transl Med. 2019 Dec;5(4):373-386. doi: 10.1007/s40883-019-00094-6. Epub 2019 Feb 27.

Abstract

Vocal fold scar, characterized by alterations in the lamina propria extracellular matrix, disrupts normal voice quality and function. Due to a lack of satisfactory clinical treatments, there is a need for tissue engineering strategies to restore voice. Candidate biomaterials for vocal fold tissue engineering must match the unique biomechanical and viscoelastic properties of native tissue without provoking inflammation. We sought to introduce elastomeric properties to hyaluronic acid (HA)-based biomaterials by incorporating resilin-like polypeptide (RLP) into hybrid hydrogels. Physically crosslinked RLP/HA and chemically crosslinked RLP-acrylamide/thiolated HA (RLP-AM/HA-SH) hydrogels were fabricated using cytocompatible chemistries. Mechanical properties of hydrogels were assessed in vitro using oscillatory rheology. Hybrid hydrogels were injected into rabbit vocal folds and tissues were assessed using rheology and histology. A small number of animals underwent acute vocal fold injury followed by injection of RLP-AM/HA-SH hydrogel alone or as a carrier for human bone marrow mesenchymal stem cells (BM-MSCs). Rheological testing confirmed that mechanical properties of materials in vitro resembled native vocal fold tissue and that viscoelasticity of vocal fold mucosa was preserved days 5 and 21 after injection. Histological analysis revealed that hybrid hydrogels provoked only mild inflammation in vocal fold lamina propria with demonstrated safety in the airway for up to 3 weeks, confirming acute biocompatibility of crosslinking chemistries. After acute injury, RLP-AM/HA-SH gel with and without BM-MSCs did not result in adverse effects or increased inflammation. Collectively, results indicate that RLP and HA-based hybrid hydrogels are highly promising for engineering the vocal fold lamina propria.

摘要

声带瘢痕以固有层细胞外基质改变为特征,会破坏正常的嗓音质量和功能。由于缺乏令人满意的临床治疗方法,因此需要采用组织工程策略来恢复嗓音。用于声带组织工程的候选生物材料必须与天然组织独特的生物力学和粘弹性特性相匹配,且不会引发炎症。我们试图通过将类弹性蛋白多肽(RLP)掺入混合水凝胶中,赋予基于透明质酸(HA)的生物材料弹性特性。使用细胞相容性化学方法制备了物理交联的RLP/HA和化学交联的RLP-丙烯酰胺/硫醇化HA(RLP-AM/HA-SH)水凝胶。使用振荡流变学在体外评估水凝胶的力学性能。将混合水凝胶注入兔声带,并使用流变学和组织学评估组织。少数动物经历急性声带损伤,随后单独注射RLP-AM/HA-SH水凝胶或作为人骨髓间充质干细胞(BM-MSCs)的载体。流变学测试证实,材料在体外的力学性能类似于天然声带组织,并且在注射后第5天和第21天声带黏膜的粘弹性得以保留。组织学分析表明,混合水凝胶仅在声带固有层引发轻度炎症,在气道中显示出长达3周的安全性,证实了交联化学的急性生物相容性。急性损伤后,含和不含BM-MSCs的RLP-AM/HA-SH凝胶均未产生不良反应或炎症增加。总体而言,结果表明基于RLP和HA的混合水凝胶在声带固有层工程方面极具前景。

相似文献

1
Biocompatibility and Viscoelastic Properties of Injectable Resilin-Like Polypeptide and Hyaluronan Hybrid Hydrogels in Rabbit Vocal Folds.
Regen Eng Transl Med. 2019 Dec;5(4):373-386. doi: 10.1007/s40883-019-00094-6. Epub 2019 Feb 27.
2
Biocompatibility of injectable resilin-based hydrogels.
J Biomed Mater Res A. 2018 Aug;106(8):2229-2242. doi: 10.1002/jbm.a.36418. Epub 2018 May 11.
4
Incorporation of types I and III collagen in tunable hyaluronan hydrogels for vocal fold tissue engineering.
Acta Biomater. 2019 Mar 15;87:97-107. doi: 10.1016/j.actbio.2019.01.058. Epub 2019 Jan 30.
5
Viscoelasticity of hyaluronic acid-gelatin hydrogels for vocal fold tissue engineering.
J Biomed Mater Res B Appl Biomater. 2016 Feb;104(2):283-90. doi: 10.1002/jbm.b.33358. Epub 2015 Feb 27.
7
Transient dynamic mechanical properties of resilin-based elastomeric hydrogels.
Front Chem. 2014 Apr 28;2:21. doi: 10.3389/fchem.2014.00021. eCollection 2014.
8
Retention of Human-Induced Pluripotent Stem Cells (hiPS) With Injectable HA Hydrogels for Vocal Fold Engineering.
Ann Otol Rhinol Laryngol. 2017 Apr;126(4):304-314. doi: 10.1177/0003489417691296. Epub 2017 Feb 12.
9
Versatile fiber-reinforced hydrogels to mimic the microstructure and mechanics of human vocal-fold upper layers.
Acta Biomater. 2023 Dec;172:92-105. doi: 10.1016/j.actbio.2023.09.035. Epub 2023 Sep 23.
10
Recombinant Resilin-Based Bioelastomers for Regenerative Medicine Applications.
Adv Healthc Mater. 2016 Jan 21;5(2):266-75. doi: 10.1002/adhm.201500411. Epub 2015 Dec 3.

引用本文的文献

1
Design and applications of self-assembled polypeptide matrices in wound healing.
Front Bioeng Biotechnol. 2025 Aug 11;13:1646622. doi: 10.3389/fbioe.2025.1646622. eCollection 2025.
2
Spontaneous Self-Organized Order Emerging From Intrinsically Disordered Protein Polymers.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025 Jan-Feb;17(1):e70003. doi: 10.1002/wnan.70003.
4
Engineered Protein Hydrogels as Biomimetic Cellular Scaffolds.
Adv Mater. 2024 Nov;36(45):e2407794. doi: 10.1002/adma.202407794. Epub 2024 Sep 5.
6
Progress in Vocal Fold Regenerative Biomaterials: An Immunological Perspective.
Adv Nanobiomed Res. 2022 Feb;2(2). doi: 10.1002/anbr.202100119. Epub 2021 Dec 18.
7
Application of Thermoresponsive Intrinsically Disordered Protein Polymers in Nanostructured and Microstructured Materials.
Macromol Biosci. 2021 Sep;21(9):e2100129. doi: 10.1002/mabi.202100129. Epub 2021 Jun 18.
8
Resilin-mimetics as a smart biomaterial platform for biomedical applications.
Nat Commun. 2021 Jan 8;12(1):149. doi: 10.1038/s41467-020-20375-x.

本文引用的文献

1
Sex bias in basic science and translational otolaryngology research.
Laryngoscope. 2019 Mar;129(3):613-618. doi: 10.1002/lary.27498. Epub 2018 Nov 8.
2
Microstructured Elastomer-PEG Hydrogels via Kinetic Capture of Aqueous Liquid-Liquid Phase Separation.
Adv Sci (Weinh). 2018 Mar 12;5(6):1701010. doi: 10.1002/advs.201701010. eCollection 2018 Jun.
3
Biocompatibility of injectable resilin-based hydrogels.
J Biomed Mater Res A. 2018 Aug;106(8):2229-2242. doi: 10.1002/jbm.a.36418. Epub 2018 May 11.
4
5
Repairing the vibratory vocal fold.
Laryngoscope. 2018 Jan;128(1):153-159. doi: 10.1002/lary.26801. Epub 2017 Aug 3.
6
Tuning Hydrogel Properties to Promote the Assembly of Salivary Gland Spheroids in 3D.
ACS Biomater Sci Eng. 2016 Dec 12;2(12):2217-2230. doi: 10.1021/acsbiomaterials.6b00419. Epub 2016 Oct 18.
8
Mesenchymal stromal cell injection promotes vocal fold scar repair without long-term engraftment.
Cytotherapy. 2016 Oct;18(10):1284-96. doi: 10.1016/j.jcyt.2016.07.005.
9
Tissue engineering-based therapeutic strategies for vocal fold repair and regeneration.
Biomaterials. 2016 Nov;108:91-110. doi: 10.1016/j.biomaterials.2016.08.054. Epub 2016 Sep 2.
10
MERS versus Standard Surgical Approaches for Porcine Vocal Fold Scarring with Adipose Stem Cell Constructs.
Otolaryngol Head Neck Surg. 2016 Oct;155(4):612-23. doi: 10.1177/0194599816645772. Epub 2016 May 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验