Suppr超能文献

异质结中激子介导的能量转移实现红外光催化。

Exciton-Mediated Energy Transfer in Heterojunction Enables Infrared Light Photocatalysis.

作者信息

Li Yuanjin, Wang Hui, Zhang Xiaodong, Wang Shuhui, Jin Sen, Xu Xiaoliang, Liu Wenxiu, Zhao Zhi, Xie Yi

机构信息

Hefei National Laboratory for Physical Sciences at the Microscale, CAS Centre for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, China.

Institute of Energy, Hefei Comprehensive National Science Center, Hefei, 230031, China.

出版信息

Angew Chem Int Ed Engl. 2021 Jun 1;60(23):12891-12896. doi: 10.1002/anie.202101090. Epub 2021 May 5.

Abstract

Although a few semiconductors can directly absorb infrared light, their intrinsic properties like improper band-edge position and strong electron-hole interaction restrict further photocatalytic applications. Herein, we propose an exciton-mediated energy transfer strategy for realizing efficient infrared light response in heterostructures. Using black phosphorous/polymeric carbon nitride (BP/CN) heterojunction, CN could be indirectly excited by infrared light with the aid of nonradiatively exciton-based energy transfer from BP. At the same time, excitons are dissociated into free charge carriers at the interface of BP/CN heterojunction, followed by hole injection to BP and electron retainment in CN. As a result of these unique photoexcitation processes, BP/CN heterojunction exhibits promoted conversion rate and selectivity in amine-amine oxidative coupling reaction even under infrared light irradiation. This study opens a new way for the design of efficient infrared light activating photocatalysts.

摘要

尽管少数半导体能够直接吸收红外光,但其诸如带边位置不合适和电子-空穴相互作用强烈等固有特性限制了其进一步的光催化应用。在此,我们提出一种激子介导的能量转移策略,以实现异质结构中高效的红外光响应。利用黑磷/聚合氮化碳(BP/CN)异质结,借助从BP进行的基于非辐射激子的能量转移,CN能够被红外光间接激发。同时,激子在BP/CN异质结界面处解离为自由电荷载流子,随后空穴注入到BP中,电子保留在CN中。由于这些独特的光激发过程,即使在红外光照射下,BP/CN异质结在胺-胺氧化偶联反应中也表现出提高的转化率和选择性。这项研究为设计高效的红外光激活光催化剂开辟了一条新途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验