Suppr超能文献

通过在专性甲烷氧化菌中重建多碳利用途径,从甲烷和甘油可持续生物合成化学品。

Sustainable biosynthesis of chemicals from methane and glycerol via reconstruction of multi-carbon utilizing pathway in obligate methanotrophic bacteria.

机构信息

Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, 17104, Yongin-si, Gyeonggi-do, South Korea.

出版信息

Microb Biotechnol. 2021 Nov;14(6):2552-2565. doi: 10.1111/1751-7915.13809. Epub 2021 Apr 8.

Abstract

Obligate methanotrophic bacteria can utilize methane, an inexpensive carbon feedstock, as a sole energy and carbon substrate, thus are considered as the only nature-provided biocatalyst for sustainable biomanufacturing of fuels and chemicals from methane. To address the limitation of native C1 metabolism of obligate type I methanotrophs, we proposed a novel platform strain that can utilize methane and multi-carbon substrates, such as glycerol, simultaneously to boost growth rates and chemical production in Methylotuvimicrobium alcaliphilum 20Z. To demonstrate the uses of this concept, we reconstructed a 2,3-butanediol biosynthetic pathway and achieved a fourfold higher titer of 2,3-butanediol production by co-utilizing methane and glycerol compared with that of methanotrophic growth. In addition, we reported the creation of a methanotrophic biocatalyst for one-step bioconversion of methane to methanol in which glycerol was used for cell growth, and methane was mainly used for methanol production. After the deletion of genes encoding methanol dehydrogenase (MDH), 11.6 mM methanol was obtained after 72 h using living cells in the absence of any chemical inhibitors of MDH and exogenous NADH source. A further improvement of this bioconversion was attained by using resting cells with a significantly increased titre of 76 mM methanol after 3.5 h with the supply of 40 mM formate. The work presented here provides a novel framework for a variety of approaches in methane-based biomanufacturing.

摘要

专性甲烷营养菌可以将甲烷(一种廉价的碳源)用作唯一的能量和碳底物,因此被认为是唯一一种天然的生物催化剂,可用于从甲烷可持续生物制造燃料和化学品。为了解决专性 I 型甲烷营养菌固有 C1 代谢的限制,我们提出了一种新型平台菌株,该菌株可以同时利用甲烷和多种碳底物(如甘油),以提高生长速率和在产碱甲基杆菌 20Z 中的化学产物产量。为了证明这一概念的用途,我们重建了 2,3-丁二醇生物合成途径,与甲烷营养生长相比,通过共利用甲烷和甘油实现了 2,3-丁二醇产量的四倍提高。此外,我们报道了一种用于甲烷到甲醇一步生物转化的甲烷营养生物催化剂的创建,其中甘油用于细胞生长,而甲烷主要用于甲醇生产。在删除编码甲醇脱氢酶(MDH)的基因后,在没有任何 MDH 化学抑制剂和外源 NADH 源的情况下,使用活细胞在 72 小时内获得了 11.6 mM 的甲醇。通过使用休息细胞并在 3.5 小时内提供 40 mM 甲酸盐,进一步提高了这种生物转化的产量,得到了 76 mM 的甲醇。本工作为基于甲烷的生物制造的各种方法提供了一个新的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5004/8601198/dd0a3503c390/MBT2-14-2552-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验