de Godoi Contessoto Vinícius, Ramos Felipe Cardoso, de Melo Ricardo Rodrigues, de Oliveira Vinícius Martins, Scarpassa Josiane Aniele, de Sousa Amanda Silva, Zanphorlin Letıcia Maria, Slade Gabriel Gouvea, Leite Vitor Barbanti Pereira, Ruller Roberto
Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil; Center for Theoretical Biological Physics, Rice University, Houston, Texas; Department of Physics, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo, Brazil.
Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil.
Biophys J. 2021 Jun 1;120(11):2172-2180. doi: 10.1016/j.bpj.2021.03.036. Epub 2021 Apr 5.
Understanding the aspects that contribute to improving proteins' biochemical properties is of high relevance for protein engineering. Properties such as the catalytic rate, thermal stability, and thermal resistance are crucial for applying enzymes in the industry. Different interactions can influence those biochemical properties of an enzyme. Among them, the surface charge-charge interactions have been a target of particular attention. In this study, we employ the Tanford-Kirkwood solvent accessibility model using the Monte Carlo algorithm (TKSA-MC) to predict possible interactions that could improve stability and catalytic rate of a WT xylanase (XynA) and its M6 xylanase (XynA) mutant. The modeling prediction indicates that mutating from a lysine in position 99 to a glutamic acid (K99E) favors the native state stabilization in both xylanases. Our lab results showed that mutated xylanases had their thermotolerance and catalytic rate increased, which conferred higher processivity of delignified sugarcane bagasse. The TKSA-MC approach employed here is presented as an efficient computational-based design strategy that can be applied to improve the thermal resistance of enzymes with industrial and biotechnological applications.
了解有助于改善蛋白质生化特性的各个方面对于蛋白质工程具有高度相关性。诸如催化速率、热稳定性和耐热性等特性对于在工业中应用酶至关重要。不同的相互作用会影响酶的那些生化特性。其中,表面电荷 - 电荷相互作用一直是特别关注的目标。在本研究中,我们采用使用蒙特卡罗算法的坦福德 - 柯克伍德溶剂可及性模型(TKSA - MC)来预测可能改善野生型木聚糖酶(XynA)及其M6木聚糖酶(XynA)突变体稳定性和催化速率的相互作用。建模预测表明,从第99位的赖氨酸突变为谷氨酸(K99E)有利于两种木聚糖酶的天然状态稳定。我们实验室的结果表明,突变的木聚糖酶的耐热性和催化速率提高,这赋予了脱木质甘蔗渣更高的持续合成能力。这里采用的TKSA - MC方法是一种有效的基于计算的设计策略,可应用于提高具有工业和生物技术应用的酶的耐热性。