Suppr超能文献

相似文献

1
Electrostatic interaction optimization improves catalytic rates and thermotolerance on xylanases.
Biophys J. 2021 Jun 1;120(11):2172-2180. doi: 10.1016/j.bpj.2021.03.036. Epub 2021 Apr 5.
2
Improving the Thermostability of Xylanase A from by Combining Bioinformatics and Electrostatic Interactions Optimization.
J Phys Chem B. 2021 May 6;125(17):4359-4367. doi: 10.1021/acs.jpcb.1c01253. Epub 2021 Apr 22.
3
TKSA-MC: A web server for rational mutation through the optimization of protein charge interactions.
Proteins. 2018 Nov;86(11):1184-1188. doi: 10.1002/prot.25599. Epub 2018 Sep 28.
4
Fusion of a proline-rich oligopeptide to the C-terminus of a ruminal xylanase improves catalytic efficiency.
Bioengineered. 2022 Apr;13(4):10482-10492. doi: 10.1080/21655979.2022.2061290.
5
Engineering Thermostable Microbial Xylanases Toward its Industrial Applications.
Mol Biotechnol. 2018 Mar;60(3):226-235. doi: 10.1007/s12033-018-0059-6.
6
Structural perspectives of an engineered β-1,4-xylanase with enhanced thermostability.
J Biotechnol. 2014 Nov 10;189:175-82. doi: 10.1016/j.jbiotec.2014.08.030. Epub 2014 Sep 3.
7
Impact of the removal of N-terminal non-structured amino acids on activity and stability of xylanases from Orpinomyces sp. PC-2.
Int J Biol Macromol. 2018 Jan;106:312-319. doi: 10.1016/j.ijbiomac.2017.08.015. Epub 2017 Aug 3.
8
Engineering a de novo internal disulfide bridge to improve the thermal stability of xylanase from Bacillus stearothermophilus No. 236.
J Biotechnol. 2007 Jan 1;127(2):300-9. doi: 10.1016/j.jbiotec.2006.07.005. Epub 2006 Jul 16.
9
Insights into the Catalytic Mechanism of a Novel XynA and Structure-Based Engineering for Improving Bifunctional Activities.
Biochemistry. 2021 Jul 6;60(26):2071-2083. doi: 10.1021/acs.biochem.1c00134. Epub 2021 Jun 22.
10
Engineering of xylanases for the development of biotechnologically important characteristics.
Biotechnol Bioeng. 2023 May;120(5):1171-1188. doi: 10.1002/bit.28339. Epub 2023 Feb 7.

引用本文的文献

本文引用的文献

1
Predicting the stability of mutant proteins by computational approaches: an overview.
Brief Bioinform. 2021 May 20;22(3). doi: 10.1093/bib/bbaa074.
2
Rational Design of Chymotrypsin Inhibitor 2 by Optimizing Non-Native Interactions.
J Chem Inf Model. 2020 Feb 24;60(2):982-988. doi: 10.1021/acs.jcim.9b00911. Epub 2019 Dec 19.
3
A mini review of xylanolytic enzymes with regards to their synergistic interactions during hetero-xylan degradation.
World J Microbiol Biotechnol. 2019 Nov 14;35(12):187. doi: 10.1007/s11274-019-2765-z.
4
A Dynamic Hydrophobic Core and Surface Salt Bridges Thermostabilize a Designed Three-Helix Bundle.
Biophys J. 2019 Feb 19;116(4):621-632. doi: 10.1016/j.bpj.2019.01.012. Epub 2019 Jan 12.
5
Non-Native Cooperative Interactions Modulate Protein Folding Rates.
J Phys Chem B. 2018 Dec 6;122(48):10817-10824. doi: 10.1021/acs.jpcb.8b08990. Epub 2018 Nov 21.
6
Engineering more stable proteins.
Chem Soc Rev. 2018 Dec 21;47(24):9026-9045. doi: 10.1039/c8cs00014j. Epub 2018 Oct 11.
7
TKSA-MC: A web server for rational mutation through the optimization of protein charge interactions.
Proteins. 2018 Nov;86(11):1184-1188. doi: 10.1002/prot.25599. Epub 2018 Sep 28.
8
9
A new method to evaluate temperature vs. pH activity profiles for biotechnological relevant enzymes.
Biotechnol Biofuels. 2017 Oct 11;10:234. doi: 10.1186/s13068-017-0923-9. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验