Zheng Nan, Cai Yongchao, Zhang Zehua, Zhou Huimin, Deng Yu, Du Shuang, Tu Mai, Fang Wei, Xia Xiaole
Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China.
School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, PR China.
Nat Commun. 2025 Jan 11;16(1):604. doi: 10.1038/s41467-025-55944-5.
The pursuit of obtaining enzymes with high activity and stability remains a grail in enzyme evolution due to the stability-activity trade-off. Here, we develop an isothermal compressibility-assisted dynamic squeezing index perturbation engineering (iCASE) strategy to construct hierarchical modular networks for enzymes of varying complexity. Molecular mechanism analysis elucidates that the peak of adaptive evolution is reached through a structural response mechanism among variants. Furthermore, this dynamic response predictive model using structure-based supervised machine learning is established to predict enzyme function and fitness, demonstrating robust performance across different datasets and reliable prediction for epistasis. The universality of the iCASE strategy is validated by four sorts of enzymes with different structures and catalytic types. This machine learning-based iCASE strategy provides guidance for future research on the fitness evolution of enzymes.
由于稳定性-活性权衡的存在,在酶的进化过程中,追求获得具有高活性和稳定性的酶仍然是一个难以实现的目标。在此,我们开发了一种等温压缩性辅助的动态挤压指数扰动工程(iCASE)策略,以构建不同复杂程度的酶的层次模块化网络。分子机制分析表明,通过变体之间的结构响应机制达到了适应性进化的峰值。此外,还建立了这种基于结构的监督式机器学习的动态响应预测模型,以预测酶的功能和适应性,证明了其在不同数据集上的强大性能以及对上位性的可靠预测。iCASE策略的通用性通过四种具有不同结构和催化类型的酶得到了验证。这种基于机器学习的iCASE策略为酶适应性进化的未来研究提供了指导。