Schnappinger Thomas, de Vivie-Riedle Regina
Department of Chemistry, LMU Munich, Germany, D-81377 Munich, Germany.
J Chem Phys. 2021 Apr 7;154(13):134306. doi: 10.1063/5.0041365.
Ultrafast optical techniques allow us to study ultrafast molecular dynamics involving both nuclear and electronic motion. To support interpretation, theoretical approaches are needed that can describe both the nuclear and electron dynamics. Hence, we revisit and expand our ansatz for the coupled description of the nuclear and electron dynamics in molecular systems (NEMol). In this purely quantum mechanical ansatz, the quantum-dynamical description of the nuclear motion is combined with the calculation of the electron dynamics in the eigenfunction basis. The NEMol ansatz is applied to simulate the coupled dynamics of the molecule NO in the vicinity of a conical intersection (CoIn) with a special focus on the coherent electron dynamics induced by the non-adiabatic coupling. Furthermore, we aim to control the dynamics of the system when passing the CoIn. The control scheme relies on the carrier envelope phase of a few-cycle IR pulse. The laser pulse influences both the movement of the nuclei and the electrons during the population transfer through the CoIn.
超快光学技术使我们能够研究涉及核运动和电子运动的超快分子动力学。为了辅助解释,需要能够描述核动力学和电子动力学的理论方法。因此,我们重新审视并扩展了我们用于分子系统中核动力学和电子动力学耦合描述的假设(NEMol)。在这个纯量子力学假设中,核运动的量子动力学描述与本征函数基下电子动力学的计算相结合。NEMol假设被应用于模拟分子NO在锥形交叉点(CoIn)附近的耦合动力学,特别关注非绝热耦合诱导的相干电子动力学。此外,我们旨在控制系统通过CoIn时的动力学。控制方案依赖于几周期红外脉冲的载波包络相位。在通过CoIn进行布居转移期间,激光脉冲会影响原子核和电子的运动。