Tran Thierry, Ferté Anthony, Vacher Morgane
Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France.
J Phys Chem Lett. 2024 Apr 4;15(13):3646-3652. doi: 10.1021/acs.jpclett.4c00106. Epub 2024 Mar 26.
Attochemistry aims to exploit the properties of coherent electronic wavepackets excited via attosecond pulses to control the formation of photoproducts. Such molecular processes can, in principle, be simulated with various nonadiabatic dynamics methods, yet the impact of the approximations underlying the methods is rarely assessed. The performances of widely used mixed quantum-classical approaches, Tully surface hopping, and classical Ehrenfest methods are evaluated against the high-accuracy DD-vMCG quantum dynamics. This comparison is conducted for the valence ionization of fluorobenzene. Analyzing the nuclear motion induced in the branching space of the nearby conical intersection, the results show that the mixed quantum-classical methods reproduce quantitatively the average motion of a quantum wavepacket when initiated on a single electronic state. However, they fail to properly capture the nuclear motion induced by an electronic wavepacket along the derivative coupling, the latter originating from the quantum electronic coherence property, key to attochemistry.
阿秒化学旨在利用通过阿秒脉冲激发的相干电子波包的特性来控制光产物的形成。原则上,此类分子过程可用各种非绝热动力学方法进行模拟,但这些方法所基于的近似的影响很少得到评估。针对高精度的含时密度泛函变分多组态高斯方法,评估了广泛使用的混合量子 - 经典方法、塔利表面跳跃方法和经典埃伦费斯特方法的性能。对氟苯的价电离进行了这种比较。通过分析在附近锥形交叉点的分支空间中诱导的核运动,结果表明,当在单个电子态上启动时,混合量子 - 经典方法定量地再现了量子波包的平均运动。然而,它们未能正确捕捉由电子波包沿着导数耦合诱导的核运动,后者源自量子电子相干特性,这是阿秒化学的关键。