Suppr超能文献

基于人群的研究预测肾细胞癌患者的远处转移。

A population-based study to predict distant metastasis in patients with renal cell carcinoma.

机构信息

Department of Urology, The Second Affiliated Hospital, University of South China, Hengyang, China.

Department of Urology, Xiangya Hospital, Central South University, Changsha, China.

出版信息

Ann Palliat Med. 2021 Apr;10(4):4273-4288. doi: 10.21037/apm-20-2481. Epub 2021 Mar 23.

Abstract

BACKGROUND

Nomogram is potentially applied for quantitatively evaluating the probability of distant metastasis. The objective of our research was to establish a nomogram to predict distant metastasis in renal cell carcinoma (RCC) patients.

METHODS

We conducted a retrospective analysis on 37,190 RCC cases diagnosed between 2010 and 2015 in the Surveillance Epidemiology and End Results (SEER) database. A multivariate logistic regression model-based nomogram was applied for predicting the risk factors concerning distant metastasis of RCC individuals. The concordance index (C-index) and calibration curves were utilized to internally validate the discrimination of nomogram. Decision curve analysis (DCA) was applied for comparing the predictive performance and clinically practical values between nomogram and conventional clinicopathologic risk factors.

RESULTS

The nomogram incorporated seven clinical variables and achieved a predictive accuracy with a C-index of 0.863. The calibration plots illustrated optimal accordance between model prediction and practical observation. The DCA indicated the nomogram-based clinical utility. Receiver operating characteristic (ROC) curves also demonstrated an area under the curve (AUC) of 0.901 [95% confidence interval (CI): 0.894-0.908] in the training cohort and 0.892 (95% CI: 0.881-0.903) in the testing cohort.

CONCLUSIONS

Our proposed novel nomogram potentially serves as an accurate and user-friendly clinical tool to predict occurrence of distant metastases in RCC patients.

摘要

背景

列线图可用于定量评估远处转移的概率。本研究旨在建立一个列线图,以预测肾细胞癌(RCC)患者的远处转移。

方法

我们对 2010 年至 2015 年间 SEER 数据库中诊断的 37190 例 RCC 病例进行了回顾性分析。应用基于多变量逻辑回归模型的列线图预测 RCC 个体远处转移的危险因素。一致性指数(C 指数)和校准曲线用于内部验证列线图的判别能力。决策曲线分析(DCA)用于比较列线图和传统临床病理危险因素的预测性能和临床实用价值。

结果

该列线图纳入了 7 个临床变量,预测准确性的 C 指数为 0.863。校准图表明模型预测与实际观察之间存在最佳一致性。DCA 表明基于列线图的临床实用性。ROC 曲线也显示了训练队列中的 AUC 为 0.901(95%CI:0.894-0.908),测试队列中的 AUC 为 0.892(95%CI:0.881-0.903)。

结论

我们提出的新列线图可作为一种准确且易于使用的临床工具,用于预测 RCC 患者远处转移的发生。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验