Suppr超能文献

基于三维剪切波弹性成像的前列腺癌检测

Prostate Cancer Detection Using 3-D Shear Wave Elasticity Imaging.

机构信息

Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.

Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.

出版信息

Ultrasound Med Biol. 2021 Jul;47(7):1670-1680. doi: 10.1016/j.ultrasmedbio.2021.02.006. Epub 2021 Apr 6.

Abstract

Transrectal ultrasound (TRUS) B-mode imaging provides insufficient sensitivity and specificity for prostate cancer (PCa) targeting when used for biopsy guidance. Shear wave elasticity imaging (SWEI) is an elasticity imaging technique that has been commercially implemented and is sensitive and specific for PCa. We have developed a SWEI system capable of 3-D data acquisition using a dense acoustic radiation force (ARF) push approach that leads to enhanced shear wave signal-to-noise ratio compared with that of the commercially available SWEI systems and facilitates screening of the entire gland before biopsy. Additionally, we imaged and assessed 36 patients undergoing radical prostatectomy using 3-D SWEI and determined a shear wave speed threshold separating PCa from healthy prostate tissue with sensitivities and specificities akin to those for multiparametric magnetic resonance imaging fusion biopsy. The approach measured the mean shear wave speed in each prostate region to be 4.8 m/s (Young's modulus E = 69.1 kPa) in the peripheral zone, 5.3 m/s (E = 84.3 kPa) in the central gland and 6.0 m/s (E = 108.0 kPa) for PCa with statistically significant (p < 0.0001) differences among all regions. Three-dimensional SWEI receiver operating characteristic analyses identified a threshold of 5.6 m/s (E = 94.1 kPa) to separate PCa from healthy tissue with a sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and area under the curve (AUC) of 81%, 82%, 69%, 89% and 0.84, respectively. Additionally, a shear wave speed ratio was assessed to normalize for tissue compression and patient variability, which yielded a threshold of 1.11 to separate PCa from healthy prostate tissue and was accompanied by a substantial increase in specificity, PPV and AUC, where the sensitivity, specificity, PPV, NPV and AUC were 75%, 90%, 79%, 88% and 0.90, respectively. This work illustrates the feasibility of using 3-D SWEI data to detect and localize PCa and demonstrates the benefits of normalizing for applied compression during data acquisition for use in biopsy targeting studies.

摘要

经直肠超声(TRUS)B 模式成像在用于活检引导时,对前列腺癌(PCa)的靶向定位的灵敏度和特异性不足。剪切波弹性成像(SWEI)是一种弹性成像技术,已商业化实施,对 PCa 具有敏感性和特异性。我们开发了一种 SWEI 系统,能够使用密集声辐射力(ARF)推送方法进行 3D 数据采集,与商业上可用的 SWEI 系统相比,这种方法可提高剪切波的信噪比,并在活检前方便地对整个腺体进行筛查。此外,我们使用 3D SWEI 对 36 例接受根治性前列腺切除术的患者进行了成像和评估,并确定了一个剪切波速度阈值,可将 PCa 与健康前列腺组织区分开来,其灵敏度和特异性与多参数磁共振成像融合活检相当。该方法测量每个前列腺区域的平均剪切波速度,在周边区为 4.8 m/s(杨氏模量 E=69.1 kPa),在中央区为 5.3 m/s(E=84.3 kPa),PCa 为 6.0 m/s(E=108.0 kPa),所有区域之间的差异均具有统计学意义(p<0.0001)。3D SWEI 的接收器操作特性分析确定了一个阈值为 5.6 m/s(E=94.1 kPa),可将 PCa 与健康组织分开,其灵敏度、特异性、阳性预测值(PPV)、阴性预测值(NPV)和曲线下面积(AUC)分别为 81%、82%、69%、89%和 0.84。此外,还评估了剪切波速度比以对组织压缩和患者变异性进行归一化,得到的阈值为 1.11,可将 PCa 与健康前列腺组织分开,并且特异性、PPV 和 AUC 显著增加,其灵敏度、特异性、PPV、NPV 和 AUC 分别为 75%、90%、79%、88%和 0.90。这项工作说明了使用 3D SWEI 数据检测和定位 PCa 的可行性,并证明了在数据采集过程中对施加的压缩进行归一化以用于活检靶向研究的益处。

相似文献

1
Prostate Cancer Detection Using 3-D Shear Wave Elasticity Imaging.
Ultrasound Med Biol. 2021 Jul;47(7):1670-1680. doi: 10.1016/j.ultrasmedbio.2021.02.006. Epub 2021 Apr 6.
2
Characterizing stiffness of human prostates using acoustic radiation force.
Ultrason Imaging. 2010 Oct;32(4):201-13. doi: 10.1177/016173461003200401.
4
Multiparametric Ultrasound for Targeting Prostate Cancer: Combining ARFI, SWEI, QUS and B-Mode.
Ultrasound Med Biol. 2020 Dec;46(12):3426-3439. doi: 10.1016/j.ultrasmedbio.2020.08.022. Epub 2020 Sep 28.
8
Combined ARFI and Shear Wave Imaging of Prostate Cancer: Optimizing Beam Sequences and Parameter Reconstruction Approaches.
Ultrason Imaging. 2023 Jul;45(4):175-186. doi: 10.1177/01617346231171895. Epub 2023 May 2.
9
Correlation of Stiffness of Prostate Cancer Measured by Shear Wave Elastography with Grade Group: A Preliminary Study.
Ultrasound Med Biol. 2021 Feb;47(2):288-295. doi: 10.1016/j.ultrasmedbio.2020.10.018. Epub 2020 Nov 21.

引用本文的文献

1
Developments in Ultrasound-Based Imaging for Prostate Cancer Detection.
Prostate. 2025 Jun;85(9):823-832. doi: 10.1002/pros.24893. Epub 2025 Mar 28.
2
Amplitude-Modulation Frequency Optimization for Enhancing Harmonic Motion Imaging Performance of Breast Tumors in the Clinic.
Ultrasound Med Biol. 2025 Jan;51(1):169-179. doi: 10.1016/j.ultrasmedbio.2024.09.021. Epub 2024 Oct 19.
3
Multiparametric Ultrasound Imaging of Prostate Cancer Using Deep Neural Networks.
Ultrasound Med Biol. 2024 Nov;50(11):1716-1723. doi: 10.1016/j.ultrasmedbio.2024.07.012. Epub 2024 Aug 22.
5
Optimization of the Tracking Beam Sequence in Harmonic Motion Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Jan;71(1):102-116. doi: 10.1109/TUFFC.2023.3329729. Epub 2024 Jan 9.

本文引用的文献

1
Correlation of Stiffness of Prostate Cancer Measured by Shear Wave Elastography with Grade Group: A Preliminary Study.
Ultrasound Med Biol. 2021 Feb;47(2):288-295. doi: 10.1016/j.ultrasmedbio.2020.10.018. Epub 2020 Nov 21.
2
Multiparametric Ultrasound for Targeting Prostate Cancer: Combining ARFI, SWEI, QUS and B-Mode.
Ultrasound Med Biol. 2020 Dec;46(12):3426-3439. doi: 10.1016/j.ultrasmedbio.2020.08.022. Epub 2020 Sep 28.
3
Cancer statistics, 2020.
CA Cancer J Clin. 2020 Jan;70(1):7-30. doi: 10.3322/caac.21590. Epub 2020 Jan 8.
4
Evaluation of the Effect of Tissue Compression on the Results of Shear Wave Elastography Measurements.
Ultrason Imaging. 2018 Nov;40(6):380-393. doi: 10.1177/0161734618793837. Epub 2018 Aug 12.
5
Characterization of Viscoelastic Materials Using Group Shear Wave Speeds.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 May;65(5):780-794. doi: 10.1109/TUFFC.2018.2815505.
7
Impact of Acoustic Radiation Force Excitation Geometry on Shear Wave Dispersion and Attenuation Estimates.
Ultrasound Med Biol. 2018 Apr;44(4):897-908. doi: 10.1016/j.ultrasmedbio.2017.12.019. Epub 2018 Feb 5.
8
Evaluating the Improvement in Shear Wave Speed Image Quality Using Multidimensional Directional Filters in the Presence of Reflection Artifacts.
IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Aug;63(8):1049-1063. doi: 10.1109/TUFFC.2016.2558662. Epub 2016 Apr 27.
9
Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study.
Lancet. 2017 Feb 25;389(10071):815-822. doi: 10.1016/S0140-6736(16)32401-1. Epub 2017 Jan 20.
10
EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent.
Eur Urol. 2017 Apr;71(4):618-629. doi: 10.1016/j.eururo.2016.08.003. Epub 2016 Aug 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验