Suppr超能文献

基于深度神经网络的前列腺癌多参数超声成像

Multiparametric Ultrasound Imaging of Prostate Cancer Using Deep Neural Networks.

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC, USA.

Department of Biomedical Engineering, Duke University, Durham, NC, USA.

出版信息

Ultrasound Med Biol. 2024 Nov;50(11):1716-1723. doi: 10.1016/j.ultrasmedbio.2024.07.012. Epub 2024 Aug 22.

Abstract

OBJECTIVE

A deep neural network (DNN) was trained to generate a multiparametric ultrasound (mpUS) volume from four input ultrasound-based modalities (acoustic radiation force impulse [ARFI] imaging, shear wave elasticity imaging [SWEI], quantitative ultrasound-midband fit [QUS-MF], and B-mode) for the detection of prostate cancer.

METHODS

A DNN was trained using co-registered ARFI, SWEI, MF, and B-mode data obtained in men with biopsy-confirmed prostate cancer prior to radical prostatectomy (15 subjects, comprising 980,620 voxels). Data were obtained using a commercial scanner that was modified to allow user control of the acoustic beam sequences and provide access to the raw image data. For each subject, the index lesion and a non-cancerous region were manually segmented using visual confirmation based on whole-mount histopathology data.

RESULTS

In a prostate phantom, the DNN increased lesion contrast-to-noise ratio (CNR) compared to a previous approach that used a linear support vector machine (SVM). In the in vivo test datasets (n = 15), the DNN-based mpUS volumes clearly portrayed histopathology-confirmed prostate cancer and significantly improved CNR compared to the linear SVM (2.79 ± 0.88 vs. 1.98 ± 0.73, paired-sample t-test p < 0.001). In a sub-analysis in which the input modalities to the DNN were selectively omitted, the CNR decreased with fewer inputs; both stiffness- and echogenicity-based modalities were important contributors to the multiparametric model.

CONCLUSION

The findings from this study indicate that a DNN can be optimized to generate mpUS prostate volumes with high CNR from ARFI, SWEI, MF, and B-mode and that this approach outperforms a linear SVM approach.

摘要

目的

训练一个深度神经网络(DNN),从四种输入的基于超声的模态(声辐射力脉冲成像[ARFI]、剪切波弹性成像[SWEI]、定量超声中带拟合[QUS-MF]和 B 型模式)生成多参数超声(mpUS)体积,以检测前列腺癌。

方法

使用在接受根治性前列腺切除术(15 名患者,包含 980,620 个体素)之前经活检证实患有前列腺癌的男性中获得的经 ARFI、SWEI、MF 和 B 型模式配准的 DNN 进行训练。使用商业扫描仪获得数据,该扫描仪经过修改后允许用户控制声束序列并提供对原始图像数据的访问。对于每个患者,使用基于全视病理数据的视觉确认手动分割索引病变和非癌区域。

结果

在前列腺模型中,与使用线性支持向量机(SVM)的先前方法相比,DNN 增加了病变的对比噪声比(CNR)。在体内测试数据集(n = 15)中,基于 DNN 的 mpUS 体积清晰地描绘了经组织病理学证实的前列腺癌,并与线性 SVM 相比显著提高了 CNR(2.79 ± 0.88 vs. 1.98 ± 0.73,配对样本 t 检验,p <0.001)。在选择性省略 DNN 的输入模态的子分析中,随着输入模态的减少,CNR 降低;基于刚性和回声的模态都是多参数模型的重要贡献者。

结论

本研究的结果表明,可以优化 DNN 以从 ARFI、SWEI、MF 和 B 型模式生成具有高 CNR 的 mpUS 前列腺体积,并且这种方法优于线性 SVM 方法。

相似文献

1
Multiparametric Ultrasound Imaging of Prostate Cancer Using Deep Neural Networks.基于深度神经网络的前列腺癌多参数超声成像
Ultrasound Med Biol. 2024 Nov;50(11):1716-1723. doi: 10.1016/j.ultrasmedbio.2024.07.012. Epub 2024 Aug 22.
9
Prostate Cancer Detection Using 3-D Shear Wave Elasticity Imaging.基于三维剪切波弹性成像的前列腺癌检测
Ultrasound Med Biol. 2021 Jul;47(7):1670-1680. doi: 10.1016/j.ultrasmedbio.2021.02.006. Epub 2021 Apr 6.

引用本文的文献

本文引用的文献

1
Cancer statistics, 2023.癌症统计数据,2023 年。
CA Cancer J Clin. 2023 Jan;73(1):17-48. doi: 10.3322/caac.21763.
4
Prostate Cancer Detection Using 3-D Shear Wave Elasticity Imaging.基于三维剪切波弹性成像的前列腺癌检测
Ultrasound Med Biol. 2021 Jul;47(7):1670-1680. doi: 10.1016/j.ultrasmedbio.2021.02.006. Epub 2021 Apr 6.
8
Contrast-Enhanced Ultrasound Quantification: From Kinetic Modeling to Machine Learning.对比增强超声定量:从动力学建模到机器学习。
Ultrasound Med Biol. 2020 Mar;46(3):518-543. doi: 10.1016/j.ultrasmedbio.2019.11.008. Epub 2020 Jan 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验