Moreno Mabel, Arredondo Miryam, Ramasse Quentin M, McLaren Matthew, Stötzner Philine, Förster Stefan, Benavente Eglantina, Salgado Caterina, Devis Sindy, Solar Paula, Velasquez Luis, González Guillermo
Universidad SEK, Instituto de investigación Interdisciplinar en Ciencias Biomédicas SEK (I3CBSEK), Facultad Ciencias de la Salud, Fernando Manterola 0789, Providencia, Santiago, Chile.
Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany.
Sci Rep. 2021 Apr 8;11(1):7698. doi: 10.1038/s41598-021-86722-0.
In this contribution, we explore the potential of atomic layer deposition (ALD) techniques for developing new semiconductor metal oxide composites. Specifically, we investigate the functionalization of multi-wall trititanate nanotubes, HTiO NTs (sample T1) with zinc oxide employing two different ALD approaches: vapor phase metalation (VPM) using diethylzinc (Zn(CH), DEZ) as a unique ALD precursor, and multiple pulsed vapor phase infiltration (MPI) using DEZ and water as precursors. We obtained two different types of tubular HTiO species containing ZnO in their structures. Multi-wall trititanate nanotubes with ZnO intercalated inside the tube wall sheets were the main products from the VPM infiltration (sample T2). On the other hand, MPI (sample T3) principally leads to single-wall nanotubes with a ZnO hierarchical bi-modal functionalization, thin film coating, and surface decorated with ZnO particles. The products were mainly characterized by electron microscopy, energy dispersive X-ray, powder X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. An initial evaluation of the optical characteristics of the products demonstrated that they behaved as semiconductors. The IR study revealed the role of water, endogenous and/or exogenous, in determining the structure and properties of the products. The results confirm that ALD is a versatile tool, promising for developing tailor-made semiconductor materials.
在本论文中,我们探索了原子层沉积(ALD)技术在开发新型半导体金属氧化物复合材料方面的潜力。具体而言,我们研究了采用两种不同的ALD方法,用氧化锌对多壁钛酸盐纳米管(HTiO NTs,样品T1)进行功能化:使用二乙基锌(Zn(CH),DEZ)作为唯一的ALD前驱体进行气相金属化(VPM),以及使用DEZ和水作为前驱体进行多次脉冲气相渗透(MPI)。我们获得了两种不同类型的管状HTiO物种,其结构中含有氧化锌。管壁片层内插有氧化锌的多壁钛酸盐纳米管是VPM渗透的主要产物(样品T2)。另一方面,MPI(样品T3)主要产生具有氧化锌分级双峰功能化、薄膜涂层且表面装饰有氧化锌颗粒的单壁纳米管。这些产物主要通过电子显微镜、能量色散X射线、粉末X射线衍射、傅里叶变换红外光谱和X射线光电子能谱进行表征。对产物光学特性的初步评估表明它们表现为半导体。红外研究揭示了内源性和/或外源性水在决定产物结构和性质方面的作用。结果证实ALD是一种通用工具,有望用于开发定制的半导体材料。