Suppr超能文献

使用长重叠门控的单光子单光子雪崩二极管阵列进行荧光寿命成像:一项实验与理论研究。

Fluorescence lifetime imaging with a single-photon SPAD array using long overlapping gates: an experimental and theoretical study.

作者信息

Ardelean Andrei, Ulku Arin Can, Michalet Xavier, Charbon Edoardo, Bruschini Claudio

机构信息

AQUA Laboratory, EPFL, 71b Rue de la Maladière, Neuchâtel, Switzerland.

Department of Chemistry and Biochemistry, UCLA, 607 Charles E. Young Drive East, Los Angeles, USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2019 Feb;10882. doi: 10.1117/12.2511287. Epub 2019 Feb 24.

Abstract

Developing large arrays of single-photon avalanche diodes (SPADs) with on-chip time-correlated single-photon counting (TCSPC) capabilities continues to be a difficult task due to stringent silicon real estate constraints, high data rates and system complexity. As an alternative to TCSPC, time-gated architectures have been proposed, where the numbers of photons detected within different time gates are used as a replacement to the usual time-resolved luminescence decay. However, because of technological limitations, the minimum gate length implement is on the order of nanoseconds, longer than most fluorophore lifetimes of interest. However, recent FLIM measurements have shown that it is mainly the gate step and rise/fall time, rather than its length, which determine lifetime resolution. In addition, the large number of photons captured by longer gates results in higher SNR. In this paper, we study the effects of using long, overlapping gates on lifetime extraction by phasor analysis, using a recently developed 512×512 time-gated SPAD array. The experiments used Cy3B, Rhodamine 6G and Atto550 dyes as test samples. The gate window length was varied between 11.3 ns and 23 ns while the gate step was varied between 17.86 ps and 3 ns. We validated the results with a standard TCSPC setup and investigated the case of multi-exponential samples through simulations. Results indicate that lifetime extraction is not degraded by the use of longer gates, nor is the ability to resolve multi-exponential decays.

摘要

由于严格的硅片面积限制、高数据速率和系统复杂性,开发具有片上时间相关单光子计数(TCSPC)功能的大规模单光子雪崩二极管(SPAD)阵列仍然是一项艰巨的任务。作为TCSPC的替代方案,人们提出了时间选通架构,其中在不同时间选通内检测到的光子数量被用来替代通常的时间分辨发光衰减。然而,由于技术限制,可实现的最小选通长度在纳秒量级,比大多数感兴趣的荧光团寿命还要长。然而,最近的荧光寿命成像测量表明,主要是选通步长和上升/下降时间,而不是其长度,决定了寿命分辨率。此外,较长选通捕获的大量光子会带来更高的信噪比。在本文中,我们使用最近开发的512×512时间选通SPAD阵列,通过相量分析研究了使用长的重叠选通对寿命提取的影响。实验使用Cy3B、罗丹明6G和Atto550染料作为测试样品。选通窗口长度在11.3 ns至23 ns之间变化,而选通步长在17.86 ps至3 ns之间变化。我们用标准的TCSPC装置验证了结果,并通过模拟研究了多指数样品的情况。结果表明,使用较长选通不会降低寿命提取能力,也不会影响分辨多指数衰减的能力。

相似文献

本文引用的文献

3
Fluorescence lifetime imaging--techniques and applications.荧光寿命成像——技术与应用。
J Microsc. 2012 Aug;247(2):119-36. doi: 10.1111/j.1365-2818.2012.03618.x. Epub 2012 May 24.
4
Phasor imaging with a widefield photon-counting detector.相衬成像与宽场光子计数探测器。
J Biomed Opt. 2012 Jan;17(1):016008. doi: 10.1117/1.JBO.17.1.016008.
7
The phasor approach to fluorescence lifetime imaging analysis.荧光寿命成像分析的相量法
Biophys J. 2008 Jan 15;94(2):L14-6. doi: 10.1529/biophysj.107.120154. Epub 2007 Nov 2.
8
The power and prospects of fluorescence microscopies and spectroscopies.荧光显微镜技术和光谱技术的力量与前景。
Annu Rev Biophys Biomol Struct. 2003;32:161-82. doi: 10.1146/annurev.biophys.32.110601.142525. Epub 2003 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验