Lu Xiao-Ming, Wang Xiaoguang
Department of Physics, Hangzhou Dianzi University, Hangzhou 310018, China.
Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027, China.
Phys Rev Lett. 2021 Mar 26;126(12):120503. doi: 10.1103/PhysRevLett.126.120503.
The quantum multiparameter estimation is very different from the classical multiparameter estimation due to Heisenberg's uncertainty principle in quantum mechanics. When the optimal measurements for different parameters are incompatible, they cannot be jointly performed. We find a correspondence relationship between the inaccuracy of a measurement for estimating the unknown parameter with the measurement error in the context of measurement uncertainty relations. Taking this correspondence relationship as a bridge, we incorporate Heisenberg's uncertainty principle into quantum multiparameter estimation by giving a trade-off relation between the measurement inaccuracies for estimating different parameters. For pure quantum states, this trade-off relation is tight, so it can reveal the true quantum limits on individual estimation errors in such cases. We apply our approach to derive the trade-off between attainable errors of estimating the real and imaginary parts of a complex signal encoded in coherent states and obtain the joint measurements attaining the trade-off relation. We also show that our approach can be readily used to derive the trade-off between the errors of jointly estimating the phase shift and phase diffusion without explicitly parametrizing quantum measurements.
由于量子力学中的海森堡不确定性原理,量子多参数估计与经典多参数估计有很大不同。当针对不同参数的最优测量不相容时,它们不能同时进行。在测量不确定关系的背景下,我们发现了用于估计未知参数的测量不准确与测量误差之间的对应关系。以这种对应关系为桥梁,我们通过给出估计不同参数的测量不准确之间的权衡关系,将海森堡不确定性原理纳入量子多参数估计。对于纯量子态,这种权衡关系是紧密的,因此在这种情况下它可以揭示个体估计误差的真正量子极限。我们应用我们的方法来推导估计相干态中编码的复信号的实部和虚部时可达到的误差之间的权衡,并获得达到该权衡关系的联合测量。我们还表明,我们的方法可以很容易地用于推导联合估计相移和相位扩散的误差之间的权衡,而无需明确地对量子测量进行参数化。