Suppr超能文献

缺陷稳定性对电子掺杂的α-和β-氢氧化钴纳米片中n型导电性的影响

Influence of the Defect Stability on n-Type Conductivity in Electron-Doped α- and β-Co(OH) Nanosheets.

作者信息

Martinez Eve Y, Zhu Kuixin, Li Christina W

机构信息

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.

出版信息

Inorg Chem. 2021 May 17;60(10):6950-6956. doi: 10.1021/acs.inorgchem.1c00455. Epub 2021 Apr 9.

Abstract

Electronic doping of transition-metal oxides (TMOs) is typically accomplished through the synthesis of nonstoichiometric oxide compositions and the subsequent ionization of intrinsic lattice defects. As a result, ambipolar doping of wide-band-gap TMOs is difficult to achieve because the formation energies and stabilities of vacancy and interstitial defects vary widely as a function of the oxide composition and crystal structure. The facile formation of lattice defects for one carrier type is frequently paired with the high-energy and unstable generation of defects required for the opposite carrier polarity. Previous work from our group showed that the brucite (β-phase) layered metal hydroxides of Co and Ni, intrinsically p-type materials in their anhydrous three-dimensional forms, could be n-doped using a strong chemical reductant. In this work, we extend the electron-doping study to the α polymorph of Co(OH) and elucidate the defects responsible for n-type doping in these two-dimensional materials. Through structural and electronic comparisons between the α, β, and rock-salt structures within the cobalt (hydr)oxide family of materials, we show that both layered structures exhibit facile formation of anion vacancies, the necessary defect for n-type doping, that are not accessible in the cubic CoO structure. However, the brucite polymorph is much more stable to reductive decomposition in the presence of doped electrons because of its tighter layer-to-layer stacking and octahedral coordination geometry, which results in a maximum conductivity of 10 S/cm, 2 orders of magnitude higher than the maximum value attainable on the α-Co(OH) structure.

摘要

过渡金属氧化物(TMOs)的电子掺杂通常通过合成非化学计量比的氧化物组合物以及随后本征晶格缺陷的电离来实现。因此,宽带隙TMOs的双极性掺杂很难实现,因为空位和间隙缺陷的形成能和稳定性会随着氧化物组成和晶体结构的变化而有很大差异。一种载流子类型的晶格缺陷易于形成,往往伴随着相反载流子极性所需的高能且不稳定的缺陷产生。我们团队之前的工作表明,钴和镍的水镁石(β相)层状金属氢氧化物,在其无水三维形式下本质上是p型材料,可以使用强化学还原剂进行n掺杂。在这项工作中,我们将电子掺杂研究扩展到Co(OH)的α多晶型物,并阐明了这些二维材料中n型掺杂的缺陷。通过对钴(氢)氧化物材料家族中的α、β和岩盐结构进行结构和电子比较,我们发现这两种层状结构都易于形成阴离子空位,这是n型掺杂所需的必要缺陷,而在立方CoO结构中是无法获得的。然而,由于其更紧密的层间堆积和八面体配位几何结构,水镁石多晶型物在存在掺杂电子的情况下对还原分解更稳定,这导致其最大电导率为10 S/cm,比α-Co(OH)结构可达到的最大值高2个数量级。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验