Suppr超能文献

根据氡剂量测定,确定教育环境中的最佳通风率。

Determination of optimal ventilation rates in educational environment in terms of radon dosimetry.

机构信息

Chair of Buildings and Constructional Complexes, Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova cesta 2, 1000, Ljubljana, Slovenia; Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000, Ljubljana, Slovenia.

Chair of Buildings and Constructional Complexes, Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova cesta 2, 1000, Ljubljana, Slovenia.

出版信息

Int J Hyg Environ Health. 2021 May;234:113742. doi: 10.1016/j.ijheh.2021.113742. Epub 2021 Apr 6.

Abstract

INTRODUCTION

New and renovated energy efficient buildings with minimised ventilation rates together with increased building airtightness are often associated with higher indoor radon concentrations compared to the concentrations in existing buildings. The purpose of our study is to analyse the problem associated with the increased radon concentration and ventilation requirements and recommendations in schools. The radon concentration was critically assessed by varying the design ventilation rates (DVRs) within fifteen cases according to legislative requirements and recommendations. The case study is a branch primary school in western part of Slovenia situated in a radon prone area.

METHODS

Radon (Rn) concentrations were simulated in the classroom, using CONTAM 3.2.

PROGRAM

For validation, measurements were performed on 8 measuring days in September and 6 measuring days in March. The simulated and measured Rn concentrations are well correlated for all measurement days, with the simulated/measured ratio of 0.85-1.39. In order to define optimal DVRs in terms of dosimetry, the effective dose and its ratio to the worldwide average effective dose at workplace, received by radon progeny in 950 h (expected effective dose, 0.13 mSv/y), were calculated for each case.

RESULTS

Simulations showed that the highest radon concentrations were observed in case 1 with a DVR of 79.6 m/h (621 Bq/m) and case 4 with a DVR of 69.4 m/h (711 Bq/m), both defined by national regulations. The calculated values in both cases exceeded the national reference value for radon (300 Bq/m) by 2.1 times and 2.4 times, and the WHO guideline value (100 Bq/m) by 6.2 times and 7.1 times, respectively. The simulations are in line with the results of radon dosimetry. Both DVRs correspond to the highest effective doses, 1.88 mSv/y (about 14-fold higher than expected effective dose) for case 1 and 2.15 mSv/y (about 17-fold higher than expected effective dose) for case 4. Case 11_Cat I with a DVR of 1999.7 m/h defined by EN 15251: 2007 resulted in minimal Rn concentration (35 Bq/m) and corresponds to the lowest effective dose 0.11 mSv/y and its ratio to the expected effective dose 0.8.

CONCLUSIONS

Ventilation is an immediate measure to reduce radon concentration in a classroom and it must be performed in line with other holistic measures to prevent and control radon as a health risk factor.

摘要

简介

与现有建筑物相比,具有最小通风率和更高建筑密封性的新型和翻新的节能建筑通常与更高的室内氡浓度相关联。我们研究的目的是分析与增加的氡浓度以及学校通风要求和建议相关的问题。通过根据立法要求和建议在十五种情况下改变设计通风率(DVR),对氡浓度进行了严格评估。该案例研究是斯洛文尼亚西部一个位于氡高发区的分校小学。

方法

在教室中使用 CONTAM 3.2 模拟氡(Rn)浓度。

程序

为了进行验证,在 9 月的 8 个测量日和 3 月的 6 个测量日进行了测量。对于所有测量日,模拟的 Rn 浓度与实测值都很好地相关,模拟值/实测值的比值为 0.85-1.39。为了根据剂量学定义最佳的 DVR,针对每种情况计算了由氡子体在 950 小时内产生的有效剂量及其在工作场所的世界平均有效剂量(预期有效剂量为 0.13mSv/y)的比值。

结果

模拟表明,在 DVR 为 79.6 m/h(621 Bq/m)的情况下观察到最高的氡浓度在案例 1 中,在 DVR 为 69.4 m/h(711 Bq/m)的情况下观察到最高的氡浓度在案例 4 中,这两种情况均由国家法规定义。这两种情况下的计算值均超过国家规定的氡参考值(300 Bq/m)的 2.1 倍和 2.4 倍,超过世卫组织指导值(100 Bq/m)的 6.2 倍和 7.1 倍。模拟结果与氡剂量学结果一致。两种 DVR 都对应于最高的有效剂量,案例 1 为 1.88 mSv/y(约为预期有效剂量的 14 倍),案例 4 为 2.15 mSv/y(约为预期有效剂量的 17 倍)。根据 EN 15251:2007 定义的 DVR 为 1999.7 m/h 的案例 11_Cat I 产生的氡浓度最小(35 Bq/m),对应于最低的有效剂量 0.11 mSv/y 及其与预期有效剂量的比值为 0.8。

结论

通风是降低教室氡浓度的直接措施,必须与其他整体措施相结合,以防止和控制氡作为健康风险因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验