Suppr超能文献

利用真空紫外辐射(UV 或 UV)降解 N-亚硝胺和 1,4-二恶烷。

Degradation of N-nitrosamines and 1,4-dioxane using vacuum ultraviolet irradiation (UV or UV).

机构信息

Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.

Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima, 890-0065, Japan.

出版信息

Chemosphere. 2021 Sep;278:130326. doi: 10.1016/j.chemosphere.2021.130326. Epub 2021 Mar 24.

Abstract

Advanced oxidation processes (AOPs) play a vital role in attenuating contaminants of emerging concern (CECs) during potable water reuse. AOPs are conventionally performed by irradiating with a 254-nm low-pressure (LP) mercury-vapor (Hg) ultraviolet (UV) lamp along with chemical treatment. Compared with UV-C light treatment (200-280 nm), vacuum-UV (V-UV) light treatment (100-200 nm) is advantageous in terms of hydroxyl radical generation without the requirement for chemical treatment. This study assessed the potential of V-UV (172-nm Xe excimer or 185 + 254-nm LP-Hg) lamps on the destruction of two major CECs in potable water reuse, namely N-nitrosodimethylamine (NDMA) and 1,4-dioxane. Direct irradiation using UV or UV lamps achieved ≥94% removal of N-nitrosamines, including NDMA, at a UV dose of 900 mJ/cm. In contrast, the Xe excimer lamp (UV) was less effective for N-nitrosamine removal, achieving up to 82% removal of NDMA. The removal of 1,4-dioxane by V-UV lamps at a UV dose of 900 mJ/cm reached 51% (UV) and 28% (UV), both of which results were superior to that obtained using a conventional UV lamp (10%). The addition of hydrogen peroxide during UV or UV irradiation was found to enhance the removal of 1,4-dioxane, while UV irradiation without hydrogen peroxide addition still exhibited greater efficiencies than those UV lamps-based AOPs. Overall, this study demonstrated that the removal of both NDMA and 1,4-dioxane can be successfully achieved using either a UV lamp with hydrogen peroxide or a UV Xe excimer lamp without hydrogen peroxide.

摘要

高级氧化工艺(AOPs)在饮用水再利用过程中减轻新兴关注污染物(CECs)方面发挥着重要作用。AOPs 通常通过用 254nm 低压(LP)汞蒸气(Hg)紫外线(UV)灯照射并进行化学处理来进行。与 UV-C 光处理(200-280nm)相比,真空紫外线(V-UV)光处理(100-200nm)在无需化学处理的情况下生成羟基自由基方面具有优势。本研究评估了 V-UV(172nm Xe 准分子或 185+254nm LP-Hg)灯在饮用水再利用中两种主要 CECs(N-亚硝基二甲胺(NDMA)和 1,4-二恶烷)破坏方面的潜力。直接用 UV 或 UV 灯照射,在 900mJ/cm 的 UV 剂量下,可实现 94%以上的 N-亚硝胺(包括 NDMA)去除。相比之下,Xe 准分子灯(UV)对 N-亚硝胺的去除效果较差,NDMA 的去除率最高可达 82%。在 900mJ/cm 的 UV 剂量下,V-UV 灯对 1,4-二恶烷的去除率达到 51%(UV)和 28%(UV),均优于传统 UV 灯(10%)的去除率。在 UV 或 UV 照射过程中添加过氧化氢被发现可提高 1,4-二恶烷的去除率,而不添加过氧化氢的 UV 照射仍比基于 UV 灯的 AOPs 具有更高的效率。总的来说,本研究表明,使用含过氧化氢的 UV 灯或不含过氧化氢的 UV Xe 准分子灯均可成功去除 NDMA 和 1,4-二恶烷。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验