International Center for Young Scientists, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan.
Int J Biol Macromol. 2021 Jul 1;182:445-454. doi: 10.1016/j.ijbiomac.2021.04.023. Epub 2021 Apr 7.
Ultrafine porous carbon nanofiber network with ~40 nm fiber diameter is realized for the first time utilizing a biobased polymer as carbon precursor. A simple one-step carbonization procedure is applied to convert the electrospun chitosan/poly(ethylene oxide) nanofibers to self-N-doped ultrafine hierarchically porous carbon nanofiber interconnected web. The pore formation process is governed by the immiscible nature of the two polymers and the sacrificial character of poly(ethylene oxide) with low carbon yield at the carbonization temperature (800 °C). The obtained porous scaffold has a high specific surface area (564 m g), high micro (0.22 cm g) as well as meso/macropore volume (0.28 cm g). Structural analysis indicates high graphitic content and the existence of turbostratic carbon typical for carbon fibers derived from otherwise synthetic polymer precursors. X-ray photoelectron spectroscopy confirms the presence of an N-doped structure with dominating graphitic N, together with a smaller amount of pyridinic N. The prepared electrode exhibits good electrochemical performance as a supercapacitor device. The excellent charge storage characteristics are attributed to the unique ultrafine hierarchical nanoarchitecture and the interconnected N-doped carbon structure. This green material holds great promise for the realization of more sustainable high-performance energy storage devices.
首次利用生物基聚合物作为碳前体制备出直径约为 40nm 的超细多孔碳纳米纤维网络。采用简单的一步碳化法将静电纺丝的壳聚糖/聚氧化乙烯纳米纤维转化为自掺杂的超细分级多孔碳纳米纤维互联网络。孔形成过程受两种聚合物的不混溶性和聚氧化乙烯的牺牲特性控制,在碳化温度(800°C)下聚氧化乙烯的碳产率较低。所得多孔支架具有高比表面积(564m²/g)、高微孔(0.22cm³/g)和中孔/大孔体积(0.28cm³/g)。结构分析表明,具有典型碳纤维的高石墨化程度和类石墨碳的存在,而这些碳纤维通常源自其他合成聚合物前体。X 射线光电子能谱证实了存在掺杂氮的结构,其中以石墨氮为主,还有少量的吡啶氮。所制备的电极作为超级电容器器件表现出良好的电化学性能。优异的电荷存储特性归因于独特的超细分级纳米结构和互联的掺杂氮碳结构。这种绿色材料为实现更可持续的高性能储能器件提供了巨大的前景。