Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Matrix Biol. 2021 Jun;100-101:118-149. doi: 10.1016/j.matbio.2021.04.001. Epub 2021 Apr 7.
Proteoglycans and selected extracellular matrix constituents are emerging as intrinsic and critical regulators of evolutionarily conversed, intracellular catabolic pathways. Often, these secreted molecules evoke sustained autophagy in a variety of cell types, tissues, and model systems. The unique properties of proteoglycans have ushered in a paradigmatic shift to broaden our understanding of matrix-mediated signaling cascades. The dynamic cellular pathway controlling autophagy is now linked to an equally dynamic and fluid signaling network embedded in a complex meshwork of matrix molecules. A rapidly emerging field of research encompasses multiple matrix-derived candidates, representing a menagerie of soluble matrix constituents including decorin, biglycan, endorepellin, endostatin, collagen VI and plasminogen kringle 5. These matrix constituents are pro-autophagic and simultaneously anti-angiogenic. In contrast, perlecan, laminin α2 chain, and lumican have anti-autophagic functions. Mechanistically, each matrix constituent linked to intracellular catabolic events engages a specific cell surface receptor that often converges on a common core of the autophagic machinery including AMPK, Peg3 and Beclin 1. We consider this matrix-evoked autophagy as non-canonical given that it occurs in an allosteric manner and is independent of nutrient availability or prevailing bioenergetics control. We propose that matrix-regulated autophagy is an important outside-in signaling mechanism for proper tissue homeostasis that could be therapeutically leveraged to combat a variety of diseases.
蛋白聚糖和选定的细胞外基质成分正在成为进化保守的、内在的和关键的细胞内分解代谢途径调节因子。这些分泌分子通常会在多种细胞类型、组织和模型系统中引发持续的自噬。蛋白聚糖的独特性质开创了一个典范的转变,拓宽了我们对基质介导的信号级联的理解。控制自噬的动态细胞途径现在与同样动态和流畅的信号网络相关联,该网络嵌入在基质分子的复杂网络中。一个迅速出现的研究领域包括多种基质衍生的候选物,代表了一系列可溶性基质成分,包括饰胶蛋白聚糖、核心蛋白聚糖、内皮抑制素、内皮抑素、胶原 VI 和纤溶酶原kringle 5。这些基质成分具有促自噬作用,同时具有抗血管生成作用。相比之下,玻连蛋白、层粘连蛋白 α2 链和赖氨聚糖具有抗自噬作用。从机制上讲,与细胞内分解代谢事件相关的每个基质成分都与特定的细胞表面受体结合,这些受体通常集中在自噬机制的共同核心上,包括 AMPK、Peg3 和 Beclin 1。我们认为这种基质诱导的自噬是非经典的,因为它以变构方式发生,并且不依赖于营养物质的可用性或普遍的生物能量控制。我们提出,基质调节的自噬是组织稳态的重要的内外信号机制,可用于治疗多种疾病。