Suppr超能文献

生物信息学和机器学习方法鉴定 COVID-19 中的潜在药物靶点和通路。

Bioinformatics and machine learning approach identifies potential drug targets and pathways in COVID-19.

机构信息

School of Economics and Statistics, Guangzhou University, Guangzhou 510006, China.

Department of Biochemistry and Biotechnology, School of Biomedical Science, Khwaja Yunus Ali University, Sirajgonj-6751, Bangladesh.

出版信息

Brief Bioinform. 2021 Sep 2;22(5). doi: 10.1093/bib/bbab120.

Abstract

Current coronavirus disease-2019 (COVID-19) pandemic has caused massive loss of lives. Clinical trials of vaccines and drugs are currently being conducted around the world; however, till now no effective drug is available for COVID-19. Identification of key genes and perturbed pathways in COVID-19 may uncover potential drug targets and biomarkers. We aimed to identify key gene modules and hub targets involved in COVID-19. We have analyzed SARS-CoV-2 infected peripheral blood mononuclear cell (PBMC) transcriptomic data through gene coexpression analysis. We identified 1520 and 1733 differentially expressed genes (DEGs) from the GSE152418 and CRA002390 PBMC datasets, respectively (FDR < 0.05). We found four key gene modules and hub gene signature based on module membership (MMhub) statistics and protein-protein interaction (PPI) networks (PPIhub). Functional annotation by enrichment analysis of the genes of these modules demonstrated immune and inflammatory response biological processes enriched by the DEGs. The pathway analysis revealed the hub genes were enriched with the IL-17 signaling pathway, cytokine-cytokine receptor interaction pathways. Then, we demonstrated the classification performance of hub genes (PLK1, AURKB, AURKA, CDK1, CDC20, KIF11, CCNB1, KIF2C, DTL and CDC6) with accuracy >0.90 suggesting the biomarker potential of the hub genes. The regulatory network analysis showed transcription factors and microRNAs that target these hub genes. Finally, drug-gene interactions analysis suggests amsacrine, BRD-K68548958, naproxol, palbociclib and teniposide as the top-scored repurposed drugs. The identified biomarkers and pathways might be therapeutic targets to the COVID-19.

摘要

当前的 2019 年冠状病毒病(COVID-19)大流行造成了巨大的生命损失。目前正在世界各地进行疫苗和药物的临床试验;然而,到目前为止,还没有针对 COVID-19 的有效药物。确定 COVID-19 中的关键基因和失调途径可能会揭示潜在的药物靶点和生物标志物。我们旨在确定与 COVID-19 相关的关键基因模块和枢纽靶标。我们通过基因共表达分析分析了 SARS-CoV-2 感染的外周血单核细胞(PBMC)转录组数据。我们分别从 GSE152418 和 CRA002390 PBMC 数据集鉴定了 1520 和 1733 个差异表达基因(DEG)(FDR < 0.05)。我们基于模块成员(MMhub)统计和蛋白质-蛋白质相互作用(PPI)网络(PPIhub)发现了四个关键基因模块和枢纽基因特征。通过对这些模块的基因进行富集分析的功能注释,证明了 DEG 富集了免疫和炎症反应的生物学过程。通路分析表明,枢纽基因富集了 IL-17 信号通路、细胞因子-细胞因子受体相互作用通路。然后,我们证明了枢纽基因(PLK1、AURKB、AURKA、CDK1、CDC20、KIF11、CCNB1、KIF2C、DTL 和 CDC6)的分类性能具有 >0.90 的准确率,这表明枢纽基因具有生物标志物的潜力。调控网络分析显示了靶向这些枢纽基因的转录因子和 microRNAs。最后,药物-基因相互作用分析表明安吖啶、BRD-K68548958、萘普生、帕博西尼和替尼泊苷是得分最高的再利用药物。鉴定的生物标志物和途径可能是 COVID-19 的治疗靶点。

相似文献

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验