Department of Electrical and Computer Engineering, Makerere University, Kampala, Uganda.
Department of Radiology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
Int J Comput Assist Radiol Surg. 2021 May;16(5):819-827. doi: 10.1007/s11548-021-02361-w. Epub 2021 Apr 11.
Accurate placement of the needle is critical in interventions like biopsies and regional anesthesia, during which incorrect needle insertion can lead to procedure failure and complications. Therefore, ultrasound guidance is widely used to improve needle placement accuracy. However, at steep and deep insertions, the visibility of the needle is lost. Computational methods for automatic needle tip localization could improve the clinical success rate in these scenarios.
We propose a novel algorithm for needle tip localization during challenging ultrasound-guided insertions when the shaft may be invisible, and the tip has a low intensity. There are two key steps in our approach. First, we enhance the needle tip features in consecutive ultrasound frames using a detection scheme which recognizes subtle intensity variations caused by needle tip movement. We then employ a hybrid deep neural network comprising a convolutional neural network and long short-term memory recurrent units. The input to the network is a consecutive plurality of fused enhanced frames and the corresponding original B-mode frames, and this spatiotemporal information is used to predict the needle tip location.
We evaluate our approach on an ex vivo dataset collected with in-plane and out-of-plane insertion of 17G and 22G needles in bovine, porcine, and chicken tissue, acquired using two different ultrasound systems. We train the model with 5000 frames from 42 video sequences. Evaluation on 600 frames from 30 sequences yields a tip localization error of [Formula: see text] mm and an overall inference time of 0.064 s (15 fps). Comparison against prior art on challenging datasets reveals a 30% improvement in tip localization accuracy.
The proposed method automatically models temporal dynamics associated with needle tip motion and is more accurate than state-of-the-art methods. Therefore, it has the potential for improving needle tip localization in challenging ultrasound-guided interventions.
在活检和区域麻醉等介入操作中,准确放置针至关重要,因为不正确的进针可能导致操作失败和并发症。因此,超声引导被广泛用于提高针的放置精度。然而,在陡峭和深插时,针的可见度会丢失。自动针尖定位的计算方法可以提高这些情况下的临床成功率。
当针轴不可见且针尖强度较低时,我们提出了一种新的算法,用于在具有挑战性的超声引导插入过程中进行针尖定位。我们的方法有两个关键步骤。首先,我们使用检测方案增强连续超声帧中的针尖特征,该方案识别由针尖运动引起的细微强度变化。然后,我们采用一种混合深度神经网络,包括卷积神经网络和长短时记忆循环单元。网络的输入是连续多个融合增强的帧和相应的原始 B 模式帧,并且使用该时空信息来预测针尖位置。
我们在离体数据集上进行了评估,该数据集是在牛、猪和鸡组织中使用两种不同的超声系统进行的平面内和平面外插入 17G 和 22G 针采集的。我们使用 42 个视频序列中的 5000 个帧对模型进行训练。在 30 个序列中的 600 个帧上进行评估,得到的针尖定位误差为[公式]mm,整体推断时间为 0.064 s(15 fps)。与具有挑战性数据集上的现有技术相比,该方法的针尖定位精度提高了 30%。
所提出的方法自动建模与针尖运动相关的时间动态,并且比现有技术方法更准确。因此,它有可能改善具有挑战性的超声引导介入操作中的针尖定位。