Onishi Shinichi, Egami Riku, Nakamura Yuya, Nagashima Yoshinobu, Nishihara Kaori, Matsuo Saori, Murai Atsuko, Hayashi Shuji, Uesumi Yoshifumi, Kato Atsuhiko, Tsunoda Hiroyuki, Yamazaki Masaki, Mizuno Hideaki
Translational Research Division, Chugai Pharmaceutical Co. Ltd., 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan.
Research Division, Chugai Pharmaceutical Co. Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan.
J Pathol Inform. 2022 Jun 29;13:100120. doi: 10.1016/j.jpi.2022.100120. eCollection 2022.
Assessment of the estrous cycle of mature female mammals is an important component of verifying the efficacy and safety of drug candidates. The common pathological approach of relying on expert observation has several drawbacks, including laborious work and inter-viewer variability. The recent advent of image recognition technologies using deep learning is expected to bring substantial benefits to such pathological assessments. We herein propose 2 distinct deep learning-based workflows to classify the estrous cycle stage from tissue images of the uterine horn and vagina, respectively. These constructed models were able to classify the estrous cycle stages with accuracy comparable with that of expert pathologists. Our digital workflows allow efficient pathological assessments of the estrous cycle stage in rats and are thus expected to accelerate drug research and development.
评估成熟雌性哺乳动物的发情周期是验证候选药物有效性和安全性的重要组成部分。依靠专家观察的传统病理学方法存在诸多缺点,包括工作量大以及观察者之间的差异。最近利用深度学习的图像识别技术的出现有望给此类病理学评估带来巨大益处。我们在此提出两种不同的基于深度学习的工作流程,分别从子宫角和阴道的组织图像中对发情周期阶段进行分类。这些构建的模型能够以与专家病理学家相当的准确率对发情周期阶段进行分类。我们的数字工作流程能够高效地对大鼠的发情周期阶段进行病理学评估,因此有望加速药物研发。