Iyer Laxmi R, Chua Yansong, Li Haizhou
Neuromorphic Computing, Institute of Infocomms Research, AStar, Singapore, Singapore.
Huawei Technologies Co., Ltd., Shenzhen, China.
Front Neurosci. 2021 Mar 25;15:608567. doi: 10.3389/fnins.2021.608567. eCollection 2021.
A major characteristic of spiking neural networks (SNNs) over conventional artificial neural networks (ANNs) is their ability to spike, enabling them to use spike timing for coding and efficient computing. In this paper, we assess if neuromorphic datasets recorded from static images are able to evaluate the ability of SNNs to use spike timings in their calculations. We have analyzed N-MNIST, N-Caltech101 and DvsGesture along these lines, but focus our study on N-MNIST. First we evaluate if additional information is encoded in the time domain in a neuromorphic dataset. We show that an ANN trained with backpropagation on frame-based versions of N-MNIST and N-Caltech101 images achieve 99.23 and 78.01% accuracy. These are comparable to the state of the art-showing that an algorithm that purely works on spatial data can classify these datasets. Second we compare N-MNIST and DvsGesture on two STDP algorithms, RD-STDP, that can classify only spatial data, and STDP-tempotron that classifies spatiotemporal data. We demonstrate that RD-STDP performs very well on N-MNIST, while STDP-tempotron performs better on DvsGesture. Since DvsGesture has a temporal dimension, it requires STDP-tempotron, while N-MNIST can be adequately classified by an algorithm that works on spatial data alone. This shows that precise spike timings are not important in N-MNIST. N-MNIST does not, therefore, highlight the ability of SNNs to classify temporal data. The conclusions of this paper open the question-what dataset can evaluate SNN ability to classify temporal data?
与传统人工神经网络(ANN)相比,脉冲神经网络(SNN)的一个主要特点是其能够产生脉冲,从而能够利用脉冲时间进行编码和高效计算。在本文中,我们评估了从静态图像记录的神经形态数据集是否能够评估SNN在计算中使用脉冲时间的能力。我们已经沿着这些思路分析了N-MNIST、N-Caltech101和DvsGesture,但将研究重点放在了N-MNIST上。首先,我们评估神经形态数据集中是否在时域中编码了额外信息。我们表明,在基于帧的N-MNIST和N-Caltech101图像版本上使用反向传播训练的ANN分别达到了99.23%和78.01%的准确率。这些结果与当前的技术水平相当,表明一种纯粹基于空间数据的算法可以对这些数据集进行分类。其次,我们在两种STDP算法上比较了N-MNIST和DvsGesture,一种是只能对空间数据进行分类的RD-STDP,另一种是对时空数据进行分类的STDP-tempotron。我们证明,RD-STDP在N-MNIST上表现非常好,而STDP-tempotron在DvsGesture上表现更好。由于DvsGesture具有时间维度,因此需要STDP-tempotron,而N-MNIST可以通过仅处理空间数据的算法进行充分分类。这表明精确的脉冲时间在N-MNIST中并不重要。因此,N-MNIST并没有突出SNN对时间数据进行分类的能力。本文的结论提出了一个问题——什么数据集可以评估SNN对时间数据进行分类的能力?