Suppr超能文献

基于对称 STDP 规则的尖峰神经网络的生物合理有监督学习方法。

A biologically plausible supervised learning method for spiking neural networks using the symmetric STDP rule.

机构信息

Research Center for Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, 100190 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China.

Research Center for Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, 100190 Beijing, China.

出版信息

Neural Netw. 2020 Jan;121:387-395. doi: 10.1016/j.neunet.2019.09.007. Epub 2019 Sep 27.

Abstract

Spiking neural networks (SNNs) possess energy-efficient potential due to event-based computation. However, supervised training of SNNs remains a challenge as spike activities are non-differentiable. Previous SNNs training methods can be generally categorized into two basic classes, i.e., backpropagation-like training methods and plasticity-based learning methods. The former methods are dependent on energy-inefficient real-valued computation and non-local transmission, as also required in artificial neural networks (ANNs), whereas the latter are either considered to be biologically implausible or exhibit poor performance. Hence, biologically plausible (bio-plausible) high-performance supervised learning (SL) methods for SNNs remain deficient. In this paper, we proposed a novel bio-plausible SNN model for SL based on the symmetric spike-timing dependent plasticity (sym-STDP) rule found in neuroscience. By combining the sym-STDP rule with bio-plausible synaptic scaling and intrinsic plasticity of the dynamic threshold, our SNN model implemented SL well and achieved good performance in the benchmark recognition task (MNIST dataset). To reveal the underlying mechanism of our SL model, we visualized both layer-based activities and synaptic weights using the t-distributed stochastic neighbor embedding (t-SNE) method after training and found that they were well clustered, thereby demonstrating excellent classification ability. Furthermore, to verify the robustness of our model, we trained it on another more realistic dataset (Fashion-MNIST), which also showed good performance. As the learning rules were bio-plausible and based purely on local spike events, our model could be easily applied to neuromorphic hardware for online training and may be helpful for understanding SL information processing at the synaptic level in biological neural systems.

摘要

尖峰神经网络 (SNN) 由于基于事件的计算而具有节能潜力。然而,由于尖峰活动不可微,SNN 的监督训练仍然是一个挑战。以前的 SNN 训练方法通常可以分为两类,即类似于反向传播的训练方法和基于可塑性的学习方法。前者方法依赖于能量效率低的实值计算和非局部传输,这也是人工神经网络 (ANN) 所需要的,而后者要么被认为在生物学上不可信,要么表现不佳。因此,用于 SNN 的生物学上合理 (bio-plausible) 的高性能监督学习 (SL) 方法仍然不足。在本文中,我们提出了一种基于神经科学中发现的对称尖峰时间依赖可塑性 (sym-STDP) 规则的新型生物学合理的 SNN SL 模型。通过将 sym-STDP 规则与生物学合理的突触缩放和动态阈值的内在可塑性相结合,我们的 SNN 模型很好地实现了 SL,并在基准识别任务 (MNIST 数据集) 中取得了良好的性能。为了揭示我们的 SL 模型的潜在机制,我们在训练后使用 t 分布随机邻域嵌入 (t-SNE) 方法对基于层的活动和突触权重进行可视化,发现它们聚类良好,从而证明了出色的分类能力。此外,为了验证我们模型的鲁棒性,我们在另一个更现实的数据集 (Fashion-MNIST) 上对其进行了训练,结果也表现良好。由于学习规则是生物学合理的,并且完全基于局部尖峰事件,因此我们的模型可以很容易地应用于神经形态硬件进行在线训练,并且可能有助于理解生物神经网络中突触水平的 SL 信息处理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验