Suppr超能文献

跨尺度机制:一个整合实验室和野外研究的微生物生态学整体建模框架。

Mechanism Across Scales: A Holistic Modeling Framework Integrating Laboratory and Field Studies for Microbial Ecology.

作者信息

Lui Lauren M, Majumder Erica L-W, Smith Heidi J, Carlson Hans K, von Netzer Frederick, Fields Matthew W, Stahl David A, Zhou Jizhong, Hazen Terry C, Baliga Nitin S, Adams Paul D, Arkin Adam P

机构信息

Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.

Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States.

出版信息

Front Microbiol. 2021 Mar 24;12:642422. doi: 10.3389/fmicb.2021.642422. eCollection 2021.

Abstract

Over the last century, leaps in technology for imaging, sampling, detection, high-throughput sequencing, and -omics analyses have revolutionized microbial ecology to enable rapid acquisition of extensive datasets for microbial communities across the ever-increasing temporal and spatial scales. The present challenge is capitalizing on our enhanced abilities of observation and integrating diverse data types from different scales, resolutions, and disciplines to reach a causal and mechanistic understanding of how microbial communities transform and respond to perturbations in the environment. This type of causal and mechanistic understanding will make predictions of microbial community behavior more robust and actionable in addressing microbially mediated global problems. To discern drivers of microbial community assembly and function, we recognize the need for a conceptual, quantitative framework that connects measurements of genomic potential, the environment, and ecological and physical forces to rates of microbial growth at specific locations. We describe the Framework for Integrated, Conceptual, and Systematic Microbial Ecology (FICSME), an experimental design framework for conducting process-focused microbial ecology studies that incorporates biological, chemical, and physical drivers of a microbial system into a conceptual model. Through iterative cycles that advance our understanding of the coupling across scales and processes, we can reliably predict how perturbations to microbial systems impact ecosystem-scale processes or vice versa. We describe an approach and potential applications for using the FICSME to elucidate the mechanisms of globally important ecological and physical processes, toward attaining the goal of predicting the structure and function of microbial communities in chemically complex natural environments.

摘要

在过去的一个世纪里,成像、采样、检测、高通量测序和组学分析等技术的飞跃彻底改变了微生物生态学,使得我们能够在不断增加的时间和空间尺度上,快速获取微生物群落的大量数据集。当前的挑战在于如何利用我们更强的观测能力,并整合来自不同尺度、分辨率和学科的各种数据类型,从而对微生物群落如何转变以及如何响应环境扰动形成因果关系和机理方面的理解。这种因果关系和机理方面的理解将使对微生物群落行为的预测更加可靠,并且在解决微生物介导的全球问题时更具可操作性。为了识别微生物群落组装和功能的驱动因素,我们认识到需要一个概念性的定量框架,将基因组潜力、环境以及生态和物理力的测量与特定位置的微生物生长速率联系起来。我们描述了综合、概念性和系统性微生物生态学框架(FICSME),这是一个用于开展以过程为重点的微生物生态学研究的实验设计框架,它将微生物系统的生物、化学和物理驱动因素纳入一个概念模型。通过不断迭代循环,加深我们对跨尺度和过程耦合的理解,我们能够可靠地预测对微生物系统的扰动如何影响生态系统尺度的过程,反之亦然。我们描述了一种使用FICSME来阐明全球重要生态和物理过程机制的方法及潜在应用,以实现预测化学复杂自然环境中微生物群落结构和功能的目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/326e/8024649/d07ead2f196e/fmicb-12-642422-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验