Suppr超能文献

使用泊松-玻尔兹曼方程对微管抗衡离子分布和电导率进行建模。

Modeling Microtubule Counterion Distributions and Conductivity Using the Poisson-Boltzmann Equation.

作者信息

Eakins Boden B, Patel Sahil D, Kalra Aarat P, Rezania Vahid, Shankar Karthik, Tuszynski Jack A

机构信息

Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada.

Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States.

出版信息

Front Mol Biosci. 2021 Mar 25;8:650757. doi: 10.3389/fmolb.2021.650757. eCollection 2021.

Abstract

Microtubules are highly negatively charged proteins which have been shown to behave as bio-nanowires capable of conducting ionic currents. The electrical characteristics of microtubules are highly complicated and have been the subject of previous work; however, the impact of the ionic concentration of the buffer solution on microtubule electrical properties has often been overlooked. In this work we use the non-linear Poisson Boltzmann equation, modified to account for a variable permittivity and a Stern Layer, to calculate counterion concentration profiles as a function of the ionic concentration of the buffer. We find that for low-concentration buffers ([KCl] from 10 μ to 10 ) the counterion concentration is largely independent of the buffer's ionic concentration, but for physiological-concentration buffers ([KCl] from 100 to 500 ) the counterion concentration varies dramatically with changes in the buffer's ionic concentration. We then calculate the conductivity of microtubule-counterion complexes, which are found to be more conductive than the buffer when the buffer's ionic concentrations is less than ≈100 and less conductive otherwise. These results demonstrate the importance of accounting for the ionic concentration of the buffer when analyzing microtubule electrical properties both under laboratory and physiological conditions. We conclude by calculating the basic electrical parameters of microtubules over a range of ionic buffer concentrations applicable to nanodevice and medical applications.

摘要

微管是高度带负电荷的蛋白质,已被证明表现为能够传导离子电流的生物纳米线。微管的电学特性非常复杂,并且一直是先前研究的主题;然而,缓冲溶液的离子浓度对微管电学性质的影响常常被忽视。在这项工作中,我们使用经过修正以考虑可变介电常数和斯特恩层的非线性泊松-玻尔兹曼方程,来计算作为缓冲液离子浓度函数的反离子浓度分布。我们发现,对于低浓度缓冲液([KCl]从10 μ到10 ),反离子浓度在很大程度上与缓冲液的离子浓度无关,但对于生理浓度缓冲液([KCl]从100到500 ),反离子浓度会随着缓冲液离子浓度的变化而显著变化。然后我们计算了微管-反离子复合物的电导率,当缓冲液的离子浓度小于≈100 时,发现其电导率比缓冲液更高,否则更低。这些结果表明,在分析实验室和生理条件下微管的电学性质时,考虑缓冲液的离子浓度非常重要。我们通过计算适用于纳米器件和医学应用的一系列离子缓冲液浓度范围内微管的基本电学参数来得出结论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3710/8027483/e08c430517fb/fmolb-08-650757-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验